/***************************************************************************** * Johns Hopkins University * Center For Astrophysical Sciences * FUSE ***************************************************************************** * * Synopsis: double state_limb(double pos[3], double mjdate, * double ra, double dec, double *zdis,tint day_limb) * * Description: Computes the earth limb angle from J2000 RA and DEC given * the 3-vector position of FUSE. * * Arguments: double pos (km) 3-vector position of satellite * double mjdate (days) Modified Julian date * double ra,dec (deg) J2000.0 RA and DEC * double zdist (deg) zenith angle * integer day_limb output : 1 if bright limb, 0 if dark limb * * Returns: double (deg) Earth limb angle * integer day_limb will have the value 1 or 0 when * returning in the main program. * * Calls: slaPreces preces.f * slaDcc2s * slaDranrm * slaEvp * * History: 03/10/98 E. Murphy Begin work. * 03/10/98 E. Murphy Initial version working * 07/07/99 E. Murphy Changed call to use pos instead of x,y,z * 08/26/99 E. Murphy Added zenith distance. * 05/31/00 peb Implemented cfortran.h calls for slalib * functions. * Ake, T. 1998 in The Scientific Impact of the Goddard * High Resolution Spectrograph, ed. J. C. Brandt et al., * ASP Conference Series, in preparation. * * 09/23/00 v1.5 ma Now this function determine bright or * dark limb * To do so, the procedure has a new * input argument: day_limb. * day_limb = 1 if bright, 0 if dark. * 09/24/00 v1.6 ma Fixed a bug in the input argument * 09/27/00 v1.7 ma Fixed bug in limbvec calc. * 10/02/00 v1.8 jwk Add fortran wrappers for slaDcc2s, * slaEvp, and slaDranrm * 12/18/03 bjg 1.3 Change calfusettag.h to calfuse.h * 06/17/04 bjg Corrected cfortran call to sla_preces * 07/22/04 bjg 1.4 Remove unused variables ****************************************************************************/ #include #ifdef CFORTRAN #include "cfortran.h" PROTOCCALLSFSUB5(SLA_PRECES, sla_preces, STRING, DOUBLE, DOUBLE, PDOUBLE, \ PDOUBLE) #define slaPreces(SYSTEM, EP0, EP1, RA, DC) \ CCALLSFSUB5(SLA_PRECES, sla_preces, STRING, DOUBLE, DOUBLE, PDOUBLE, \ PDOUBLE, SYSTEM, EP0, EP1, RA, DC) PROTOCCALLSFSUB3(SLA_DCC2S, sla_dcc2s, DOUBLEV, PDOUBLE, PDOUBLE) #define slaDcc2s(V, A, B) \ CCALLSFSUB3(SLA_DCC2S, sla_dcc2s, DOUBLEV, PDOUBLE, PDOUBLE, V, A, B) PROTOCCALLSFFUN1(DOUBLE, SLA_DRANRM, sla_dranrm, DOUBLE) #define slaDranrm(ANGLE) \ CCALLSFFUN1(SLA_DRANRM, sla_dranrm, DOUBLE, ANGLE) PROTOCCALLSFSUB6(SLA_EVP, sla_evp, DOUBLE, DOUBLE, DOUBLEV, DOUBLEV, DOUBLEV, \ DOUBLEV) #define slaEvp(DATE, DEQX, DVB, DPB, DVH, DPH) \ CCALLSFSUB6(SLA_EVP, sla_evp, DOUBLE, DOUBLE, DOUBLEV, DOUBLEV, DOUBLEV, \ DOUBLEV, DATE, DEQX, DVB, DPB, DVH, DPH) #else #include "slalib.h" #include "slamac.h" #endif #include "calfuse.h" double state_limb(double pos[3], double mjdate, double ra, double dec, double *zdist,int *day_limb) { double dvb[3], dpb[3], dvh[3], dph[3], limbvec[3], epoch2; double ra_earth, dec_earth, r, ndist; double ra_sun, dec_sun; int i; char fk5_st[10]="FK5"; ra*=RADIAN; dec*=RADIAN; r=sqrt(pos[0]*pos[0]+pos[1]*pos[1]+pos[2]*pos[2]); ra_earth=atan2(-pos[1],-pos[0]); dec_earth=asin(-pos[2]/r); /* * We must precess the J2000 RA and DEC to date of observation. This * is a very small correction, and could probably be ignored. */ epoch2=2000.0-((51544.0-mjdate)/365.25); #ifdef CFORTRAN slaPreces(fk5_st, 2000.0, epoch2, ra_earth, dec_earth); #else slaPreces(fk5_st, 2000.0, epoch2, &ra_earth, &dec_earth); #endif /* Now we need the position of the sun (same code as in eclipse.c) */ slaEvp(mjdate, 2000.0, dvb, dpb, dvh, dph); /* Convert the 3-vector position of the Sun into a J2000.0 RA and DEC */ for (i=0; i<3; i++) dph[i]*=-1.0; #ifdef CFORTRAN slaDcc2s(dph, ra_sun, dec_sun); #else slaDcc2s(dph, &ra_sun, &dec_sun); #endif ra_sun=slaDranrm(ra_sun); /* We must precess the J2000 RA and DEC to date of observation. This * is a very small correction, and could probably be ignored. */ epoch2=2000.0-((51544.0-mjdate)/365.25); #ifdef CFORTRAN slaPreces(fk5_st, 2000.0, epoch2, ra_sun, dec_sun); #else slaPreces(fk5_st, 2000.0, epoch2, &ra_sun, &dec_sun); #endif /* ndist is the angular distance (RADIAN) from the nadir to the target */ ndist = (acos(sin(dec)*sin(dec_earth)+ cos(dec)*cos(dec_earth)*cos(ra-ra_earth))); /* Now we want to calculate the limb vector (originating at the center of Earth and crossing the target-FUSE line perpendicularily)*/ limbvec[2]=pos[2]+r*cos(ndist)*sin(dec); limbvec[1]=pos[1]+r*cos(ndist)*cos(dec)*sin(ra); limbvec[0]=pos[0]+r*cos(ndist)*cos(dec)*cos(ra); /* Now we do the scalar product with the sun vector; then if the result is <0 the limb is in the day zone (less than 90 degrees between sun vector and limb vector)*/ if ((limbvec[0]*cos(dec_sun)*cos(ra_sun) + limbvec[1]*cos(dec_sun)*sin(ra_sun)+limbvec[2]*sin(dec_sun)) >0) { *day_limb=1; } else { *day_limb=0; } *zdist = 180.0 - ndist/RADIAN; return ndist/RADIAN-(asin(RE/r)/RADIAN); }