SUBROUTINE sla_AMPQK (RA, DA, AMPRMS, RM, DM) *+ * - - - - - - * A M P Q K * - - - - - - * * Convert star RA,Dec from geocentric apparent to mean place * * The mean coordinate system is the post IAU 1976 system, * loosely called FK5. * * Use of this routine is appropriate when efficiency is important * and where many star positions are all to be transformed for * one epoch and equinox. The star-independent parameters can be * obtained by calling the sla_MAPPA routine. * * Given: * RA d apparent RA (radians) * DA d apparent Dec (radians) * * AMPRMS d(21) star-independent mean-to-apparent parameters: * * (1) time interval for proper motion (Julian years) * (2-4) barycentric position of the Earth (AU) * (5-7) heliocentric direction of the Earth (unit vector) * (8) (grav rad Sun)*2/(Sun-Earth distance) * (9-11) ABV: barycentric Earth velocity in units of c * (12) sqrt(1-v**2) where v=modulus(ABV) * (13-21) precession/nutation (3,3) matrix * * Returned: * RM d mean RA (radians) * DM d mean Dec (radians) * * References: * 1984 Astronomical Almanac, pp B39-B41. * (also Lederle & Schwan, Astron. Astrophys. 134, * 1-6, 1984) * * Notes: * * 1) The accuracy is limited by the routine sla_EVP, called * by sla_MAPPA, which computes the Earth position and * velocity using the methods of Stumpff. The maximum * error is about 0.3 milliarcsecond. * * 2) Iterative techniques are used for the aberration and * light deflection corrections so that the routines * sla_AMP (or sla_AMPQK) and sla_MAP (or sla_MAPQK) are * accurate inverses; even at the edge of the Sun's disc * the discrepancy is only about 1 nanoarcsecond. * * Called: sla_DCS2C, sla_DIMXV, sla_DVDV, sla_DVN, sla_DCC2S, * sla_DRANRM * * P.T.Wallace Starlink 21 June 1993 * * Copyright (C) 1995 Rutherford Appleton Laboratory *- IMPLICIT NONE DOUBLE PRECISION RA,DA,AMPRMS(21),RM,DM INTEGER I,J DOUBLE PRECISION GR2E,AB1,EHN(3),ABV(3),P3(3),P2(3), : AB1P1,P1DV,P1DVP1,P1(3),W,PDE,PDEP1,P(3) DOUBLE PRECISION sla_DVDV,sla_DRANRM * Unpack scalar and vector parameters GR2E = AMPRMS(8) AB1 = AMPRMS(12) DO I=1,3 EHN(I) = AMPRMS(I+4) ABV(I) = AMPRMS(I+8) END DO * Apparent RA,Dec to Cartesian CALL sla_DCS2C(RA,DA,P3) * Precession and nutation CALL sla_DIMXV(AMPRMS(13),P3,P2) * Aberration AB1P1 = AB1+1D0 DO I=1,3 P1(I) = P2(I) END DO DO J=1,2 P1DV = sla_DVDV(P1,ABV) P1DVP1 = 1D0+P1DV W = 1D0+P1DV/AB1P1 DO I=1,3 P1(I) = (P1DVP1*P2(I)-W*ABV(I))/AB1 END DO CALL sla_DVN(P1,P3,W) DO I=1,3 P1(I) = P3(I) END DO END DO * Light deflection DO I=1,3 P(I) = P1(I) END DO DO J=1,5 PDE = sla_DVDV(P,EHN) PDEP1 = 1D0+PDE W = PDEP1-GR2E*PDE DO I=1,3 P(I) = (PDEP1*P1(I)-GR2E*EHN(I))/W END DO CALL sla_DVN(P,P2,W) DO I=1,3 P(I) = P2(I) END DO END DO * Mean RA,Dec CALL sla_DCC2S(P,RM,DM) RM = sla_DRANRM(RM) END