SUBROUTINE sla_EARTH (IY, ID, FD, PV) *+ * - - - - - - * E A R T H * - - - - - - * * Approximate heliocentric position and velocity of the Earth * * Given: * IY I year * ID I day in year (1 = Jan 1st) * FD R fraction of day * * Returned: * PV R(6) Earth position & velocity vector * * Notes: * * 1 The date and time is TDB (loosely ET) in a Julian calendar * which has been aligned to the ordinary Gregorian * calendar for the interval 1900 March 1 to 2100 February 28. * The year and day can be obtained by calling sla_CALYD or * sla_CLYD. * * 2 The Earth heliocentric 6-vector is mean equator and equinox * of date. Position part, PV(1-3), is in AU; velocity part, * PV(4-6), is in AU/sec. * * 3 Max/RMS errors 1950-2050: * 13/5 E-5 AU = 19200/7600 km in position * 47/26 E-10 AU/s = 0.0070/0.0039 km/s in speed * * 4 More precise results are obtainable with the routine sla_EVP. * * P.T.Wallace Starlink 23 November 1994 * * Copyright (C) 1995 Rutherford Appleton Laboratory *- IMPLICIT NONE INTEGER IY,ID REAL FD,PV(6) INTEGER IY4 REAL TWOPI,SPEED,REMB,SEMB,YI,YF,T,ELM,GAMMA,EM,ELT,EPS0, : E,ESQ,V,R,ELMM,COSELT,SINEPS,COSEPS,W1,W2,SELMM,CELMM PARAMETER (TWOPI=6.28318530718) * Mean orbital speed of Earth, AU/s PARAMETER (SPEED=1.9913E-7) * Mean Earth:EMB distance and speed, AU and AU/s PARAMETER (REMB=3.12E-5,SEMB=8.31E-11) * Whole years & fraction of year, and years since J1900.0 YI=FLOAT(IY-1900) IY4=MOD(MOD(IY,4)+4,4) YF=(FLOAT(4*(ID-1/(IY4+1))-IY4-2)+4.0*FD)/1461.0 T=YI+YF * Geometric mean longitude of Sun * (cf 4.881627938+6.283319509911*T MOD 2PI) ELM=MOD(4.881628+TWOPI*YF+0.00013420*T,TWOPI) * Mean longitude of perihelion GAMMA=4.908230+3.0005E-4*T * Mean anomaly EM=ELM-GAMMA * Mean obliquity EPS0=0.40931975-2.27E-6*T * Eccentricity E=0.016751-4.2E-7*T ESQ=E*E * True anomaly V=EM+2.0*E*SIN(EM)+1.25*ESQ*SIN(2.0*EM) * True ecliptic longitude ELT=V+GAMMA * True distance R=(1.0-ESQ)/(1.0+E*COS(V)) * Moon's mean longitude ELMM=MOD(4.72+83.9971*T,TWOPI) * Useful functions COSELT=COS(ELT) SINEPS=SIN(EPS0) COSEPS=COS(EPS0) W1=-R*SIN(ELT) W2=-SPEED*(COSELT+E*COS(GAMMA)) SELMM=SIN(ELMM) CELMM=COS(ELMM) * Earth position and velocity PV(1)=-R*COSELT-REMB*CELMM PV(2)=(W1-REMB*SELMM)*COSEPS PV(3)=W1*SINEPS PV(4)=SPEED*(SIN(ELT)+E*SIN(GAMMA))+SEMB*SELMM PV(5)=(W2-SEMB*CELMM)*COSEPS PV(6)=W2*SINEPS END