SUBROUTINE sla_ETRMS (EP, EV) *+ * - - - - - - * E T R M S * - - - - - - * * Compute the E-terms (elliptic component of annual aberration) * vector (double precision) * * Given: * EP dp Besselian epoch * * Returned: * EV dp(3) E-terms as (dx,dy,dz) * * Note the use of the J2000 aberration constant (20.49552 arcsec). * This is a reflection of the fact that the E-terms embodied in * existing star catalogues were computed from a variety of * aberration constants. Rather than adopting one of the old * constants the latest value is used here. * * References: * 1 Smith, C.A. et al., 1989. Astr.J. 97, 265. * 2 Yallop, B.D. et al., 1989. Astr.J. 97, 274. * * P.T.Wallace Starlink 23 August 1996 * * Copyright (C) 1996 Rutherford Appleton Laboratory *- IMPLICIT NONE DOUBLE PRECISION EP,EV(3) * Arcseconds to radians DOUBLE PRECISION AS2R PARAMETER (AS2R=0.484813681109535994D-5) DOUBLE PRECISION T,E,E0,P,EK,CP * Julian centuries since B1950 T=(EP-1950D0)*1.00002135903D-2 * Eccentricity E=0.01673011D0-(0.00004193D0+0.000000126D0*T)*T * Mean obliquity E0=(84404.836D0-(46.8495D0+(0.00319D0+0.00181D0*T)*T)*T)*AS2R * Mean longitude of perihelion P=(1015489.951D0+(6190.67D0+(1.65D0+0.012D0*T)*T)*T)*AS2R * E-terms EK=E*20.49552D0*AS2R CP=COS(P) EV(1)= EK*SIN(P) EV(2)=-EK*CP*COS(E0) EV(3)=-EK*CP*SIN(E0) END