From fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 Mon Sep 17 00:00:00 2001 From: Joseph Hunkeler Date: Wed, 8 Jul 2015 20:46:52 -0400 Subject: Initial commit --- math/slalib/evp.f | 457 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 457 insertions(+) create mode 100644 math/slalib/evp.f (limited to 'math/slalib/evp.f') diff --git a/math/slalib/evp.f b/math/slalib/evp.f new file mode 100644 index 00000000..f1e6f555 --- /dev/null +++ b/math/slalib/evp.f @@ -0,0 +1,457 @@ + SUBROUTINE slEVP (DATE, DEQX, DVB, DPB, DVH, DPH) +*+ +* - - - - +* E V P +* - - - - +* +* Barycentric and heliocentric velocity and position of the Earth +* +* All arguments are double precision +* +* Given: +* +* DATE TDB (loosely ET) as a Modified Julian Date +* (JD-2400000.5) +* +* DEQX Julian Epoch (e.g. 2000.0D0) of mean equator and +* equinox of the vectors returned. If DEQX .LE. 0D0, +* all vectors are referred to the mean equator and +* equinox (FK5) of epoch DATE. +* +* Returned (all 3D Cartesian vectors): +* +* DVB,DPB barycentric velocity, position (AU/s, AU) +* DVH,DPH heliocentric velocity, position (AU/s, AU) +* +* Called: slEPJ, slPREC +* +* Notes: +* +* 1 This routine is accurate enough for many purposes but faster and +* more compact than the slEPV routine. The maximum deviations +* from the JPL DE96 ephemeris are as follows: +* +* barycentric velocity 0.42 m/s +* barycentric position 6900 km +* +* heliocentric velocity 0.42 m/s +* heliocentric position 1600 km +* +* 2 The routine is adapted from the BARVEL and BARCOR subroutines of +* Stumpff (1980). Most of the changes are merely cosmetic and do +* not affect the results at all. However, some adjustments have +* been made so as to give results that refer to the IAU 1976 'FK5' +* equinox and precession, although the differences these changes +* make relative to the results from Stumpff's original 'FK4' version +* are smaller than the inherent accuracy of the algorithm. One +* minor shortcoming in the original routines that has NOT been +* corrected is that better numerical accuracy could be achieved if +* the various polynomial evaluations were nested. +* +* Reference: +* +* Stumpff, P., Astron.Astrophys.Suppl.Ser. 41, 1-8 (1980). +* +* Last revision: 7 April 2005 +* +* Copyright P.T.Wallace. All rights reserved. +* +* License: +* This program is free software; you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation; either version 2 of the License, or +* (at your option) any later version. +* +* This program is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with this program (see SLA_CONDITIONS); if not, write to the +* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, +* Boston, MA 02110-1301 USA +* +* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc. +*- + + IMPLICIT NONE + + DOUBLE PRECISION DATE,DEQX,DVB(3),DPB(3),DVH(3),DPH(3) + + INTEGER IDEQ,I,J,K + + REAL CC2PI,CCSEC3,CCSGD,CCKM,CCMLD,CCFDI,CCIM,T,TSQ,A,PERTL, + : PERTLD,PERTR,PERTRD,COSA,SINA,ESQ,E,PARAM,TWOE,TWOG,G, + : PHI,F,SINF,COSF,PHID,PSID,PERTP,PERTPD,TL,SINLM,COSLM, + : SIGMA,B,PLON,POMG,PECC,FLATM,FLAT + + DOUBLE PRECISION DC2PI,DS2R,DCSLD,DC1MME,DT,DTSQ,DLOCAL,DML, + : DEPS,DPARAM,DPSI,D1PDRO,DRD,DRLD,DTL,DSINLS, + : DCOSLS,DXHD,DYHD,DZHD,DXBD,DYBD,DZBD,DCOSEP, + : DSINEP,DYAHD,DZAHD,DYABD,DZABD,DR, + : DXH,DYH,DZH,DXB,DYB,DZB,DYAH,DZAH,DYAB, + : DZAB,DEPJ,DEQCOR,B1950 + + REAL SN(4),CCSEL(3,17),CCAMPS(5,15),CCSEC(3,4),CCAMPM(4,3), + : CCPAMV(4),CCPAM(4),FORBEL(7),SORBEL(17),SINLP(4),COSLP(4) + EQUIVALENCE (SORBEL(1),E),(FORBEL(1),G) + + DOUBLE PRECISION DCFEL(3,8),DCEPS(3),DCARGS(2,15),DCARGM(2,3), + : DPREMA(3,3),W,VW(3) + + DOUBLE PRECISION slEPJ + + PARAMETER (DC2PI=6.2831853071796D0,CC2PI=6.283185) + PARAMETER (DS2R=0.7272205216643D-4) + PARAMETER (B1950=1949.9997904423D0) + +* +* Constants DCFEL(I,K) of fast changing elements +* I=1 I=2 I=3 + DATA DCFEL/ 1.7400353D+00, 6.2833195099091D+02, 5.2796D-06, + : 6.2565836D+00, 6.2830194572674D+02,-2.6180D-06, + : 4.7199666D+00, 8.3997091449254D+03,-1.9780D-05, + : 1.9636505D-01, 8.4334662911720D+03,-5.6044D-05, + : 4.1547339D+00, 5.2993466764997D+01, 5.8845D-06, + : 4.6524223D+00, 2.1354275911213D+01, 5.6797D-06, + : 4.2620486D+00, 7.5025342197656D+00, 5.5317D-06, + : 1.4740694D+00, 3.8377331909193D+00, 5.6093D-06/ + +* +* Constants DCEPS and CCSEL(I,K) of slowly changing elements +* I=1 I=2 I=3 + DATA DCEPS/ 4.093198D-01,-2.271110D-04,-2.860401D-08 / + DATA CCSEL/ 1.675104E-02,-4.179579E-05,-1.260516E-07, + : 2.220221E-01, 2.809917E-02, 1.852532E-05, + : 1.589963E+00, 3.418075E-02, 1.430200E-05, + : 2.994089E+00, 2.590824E-02, 4.155840E-06, + : 8.155457E-01, 2.486352E-02, 6.836840E-06, + : 1.735614E+00, 1.763719E-02, 6.370440E-06, + : 1.968564E+00, 1.524020E-02,-2.517152E-06, + : 1.282417E+00, 8.703393E-03, 2.289292E-05, + : 2.280820E+00, 1.918010E-02, 4.484520E-06, + : 4.833473E-02, 1.641773E-04,-4.654200E-07, + : 5.589232E-02,-3.455092E-04,-7.388560E-07, + : 4.634443E-02,-2.658234E-05, 7.757000E-08, + : 8.997041E-03, 6.329728E-06,-1.939256E-09, + : 2.284178E-02,-9.941590E-05, 6.787400E-08, + : 4.350267E-02,-6.839749E-05,-2.714956E-07, + : 1.348204E-02, 1.091504E-05, 6.903760E-07, + : 3.106570E-02,-1.665665E-04,-1.590188E-07/ + +* +* Constants of the arguments of the short-period perturbations +* by the planets: DCARGS(I,K) +* I=1 I=2 + DATA DCARGS/ 5.0974222D+00,-7.8604195454652D+02, + : 3.9584962D+00,-5.7533848094674D+02, + : 1.6338070D+00,-1.1506769618935D+03, + : 2.5487111D+00,-3.9302097727326D+02, + : 4.9255514D+00,-5.8849265665348D+02, + : 1.3363463D+00,-5.5076098609303D+02, + : 1.6072053D+00,-5.2237501616674D+02, + : 1.3629480D+00,-1.1790629318198D+03, + : 5.5657014D+00,-1.0977134971135D+03, + : 5.0708205D+00,-1.5774000881978D+02, + : 3.9318944D+00, 5.2963464780000D+01, + : 4.8989497D+00, 3.9809289073258D+01, + : 1.3097446D+00, 7.7540959633708D+01, + : 3.5147141D+00, 7.9618578146517D+01, + : 3.5413158D+00,-5.4868336758022D+02/ + +* +* Amplitudes CCAMPS(N,K) of the short-period perturbations +* N=1 N=2 N=3 N=4 N=5 + DATA CCAMPS/ + : -2.279594E-5, 1.407414E-5, 8.273188E-6, 1.340565E-5,-2.490817E-7, + : -3.494537E-5, 2.860401E-7, 1.289448E-7, 1.627237E-5,-1.823138E-7, + : 6.593466E-7, 1.322572E-5, 9.258695E-6,-4.674248E-7,-3.646275E-7, + : 1.140767E-5,-2.049792E-5,-4.747930E-6,-2.638763E-6,-1.245408E-7, + : 9.516893E-6,-2.748894E-6,-1.319381E-6,-4.549908E-6,-1.864821E-7, + : 7.310990E-6,-1.924710E-6,-8.772849E-7,-3.334143E-6,-1.745256E-7, + : -2.603449E-6, 7.359472E-6, 3.168357E-6, 1.119056E-6,-1.655307E-7, + : -3.228859E-6, 1.308997E-7, 1.013137E-7, 2.403899E-6,-3.736225E-7, + : 3.442177E-7, 2.671323E-6, 1.832858E-6,-2.394688E-7,-3.478444E-7, + : 8.702406E-6,-8.421214E-6,-1.372341E-6,-1.455234E-6,-4.998479E-8, + : -1.488378E-6,-1.251789E-5, 5.226868E-7,-2.049301E-7, 0.0E0, + : -8.043059E-6,-2.991300E-6, 1.473654E-7,-3.154542E-7, 0.0E0, + : 3.699128E-6,-3.316126E-6, 2.901257E-7, 3.407826E-7, 0.0E0, + : 2.550120E-6,-1.241123E-6, 9.901116E-8, 2.210482E-7, 0.0E0, + : -6.351059E-7, 2.341650E-6, 1.061492E-6, 2.878231E-7, 0.0E0/ + +* +* Constants of the secular perturbations in longitude +* CCSEC3 and CCSEC(N,K) +* N=1 N=2 N=3 + DATA CCSEC3/-7.757020E-08/, + : CCSEC/ 1.289600E-06, 5.550147E-01, 2.076942E+00, + : 3.102810E-05, 4.035027E+00, 3.525565E-01, + : 9.124190E-06, 9.990265E-01, 2.622706E+00, + : 9.793240E-07, 5.508259E+00, 1.559103E+01/ + +* Sidereal rate DCSLD in longitude, rate CCSGD in mean anomaly + DATA DCSLD/1.990987D-07/, + : CCSGD/1.990969E-07/ + +* Some constants used in the calculation of the lunar contribution + DATA CCKM/3.122140E-05/, + : CCMLD/2.661699E-06/, + : CCFDI/2.399485E-07/ + +* +* Constants DCARGM(I,K) of the arguments of the perturbations +* of the motion of the Moon +* I=1 I=2 + DATA DCARGM/ 5.1679830D+00, 8.3286911095275D+03, + : 5.4913150D+00,-7.2140632838100D+03, + : 5.9598530D+00, 1.5542754389685D+04/ + +* +* Amplitudes CCAMPM(N,K) of the perturbations of the Moon +* N=1 N=2 N=3 N=4 + DATA CCAMPM/ + : 1.097594E-01, 2.896773E-07, 5.450474E-02, 1.438491E-07, + : -2.223581E-02, 5.083103E-08, 1.002548E-02,-2.291823E-08, + : 1.148966E-02, 5.658888E-08, 8.249439E-03, 4.063015E-08/ + +* +* CCPAMV(K)=A*M*DL/DT (planets), DC1MME=1-MASS(Earth+Moon) + DATA CCPAMV/8.326827E-11,1.843484E-11,1.988712E-12,1.881276E-12/ + DATA DC1MME/0.99999696D0/ + +* CCPAM(K)=A*M(planets), CCIM=INCLINATION(Moon) + DATA CCPAM/4.960906E-3,2.727436E-3,8.392311E-4,1.556861E-3/ + DATA CCIM/8.978749E-2/ + + + + +* +* EXECUTION +* --------- + +* Control parameter IDEQ, and time arguments + IDEQ = 0 + IF (DEQX.GT.0D0) IDEQ=1 + DT = (DATE-15019.5D0)/36525D0 + T = REAL(DT) + DTSQ = DT*DT + TSQ = REAL(DTSQ) + +* Values of all elements for the instant DATE + DO K=1,8 + DLOCAL = MOD(DCFEL(1,K)+DT*DCFEL(2,K)+DTSQ*DCFEL(3,K), DC2PI) + IF (K.EQ.1) THEN + DML = DLOCAL + ELSE + FORBEL(K-1) = REAL(DLOCAL) + END IF + END DO + DEPS = MOD(DCEPS(1)+DT*DCEPS(2)+DTSQ*DCEPS(3), DC2PI) + DO K=1,17 + SORBEL(K) = MOD(CCSEL(1,K)+T*CCSEL(2,K)+TSQ*CCSEL(3,K), + : CC2PI) + END DO + +* Secular perturbations in longitude + DO K=1,4 + A = MOD(CCSEC(2,K)+T*CCSEC(3,K), CC2PI) + SN(K) = SIN(A) + END DO + +* Periodic perturbations of the EMB (Earth-Moon barycentre) + PERTL = CCSEC(1,1) *SN(1) +CCSEC(1,2)*SN(2)+ + : (CCSEC(1,3)+T*CCSEC3)*SN(3) +CCSEC(1,4)*SN(4) + PERTLD = 0.0 + PERTR = 0.0 + PERTRD = 0.0 + DO K=1,15 + A = SNGL(MOD(DCARGS(1,K)+DT*DCARGS(2,K), DC2PI)) + COSA = COS(A) + SINA = SIN(A) + PERTL = PERTL + CCAMPS(1,K)*COSA+CCAMPS(2,K)*SINA + PERTR = PERTR + CCAMPS(3,K)*COSA+CCAMPS(4,K)*SINA + IF (K.LT.11) THEN + PERTLD = PERTLD+ + : (CCAMPS(2,K)*COSA-CCAMPS(1,K)*SINA)*CCAMPS(5,K) + PERTRD = PERTRD+ + : (CCAMPS(4,K)*COSA-CCAMPS(3,K)*SINA)*CCAMPS(5,K) + END IF + END DO + +* Elliptic part of the motion of the EMB + ESQ = E*E + DPARAM = 1D0-DBLE(ESQ) + PARAM = REAL(DPARAM) + TWOE = E+E + TWOG = G+G + PHI = TWOE*((1.0-ESQ*0.125)*SIN(G)+E*0.625*SIN(TWOG) + : +ESQ*0.54166667*SIN(G+TWOG) ) + F = G+PHI + SINF = SIN(F) + COSF = COS(F) + DPSI = DPARAM/(1D0+DBLE(E*COSF)) + PHID = TWOE*CCSGD*((1.0+ESQ*1.5)*COSF+E*(1.25-SINF*SINF*0.5)) + PSID = CCSGD*E*SINF/SQRT(PARAM) + +* Perturbed heliocentric motion of the EMB + D1PDRO = 1D0+DBLE(PERTR) + DRD = D1PDRO*(DBLE(PSID)+DPSI*DBLE(PERTRD)) + DRLD = D1PDRO*DPSI*(DCSLD+DBLE(PHID)+DBLE(PERTLD)) + DTL = MOD(DML+DBLE(PHI)+DBLE(PERTL), DC2PI) + DSINLS = SIN(DTL) + DCOSLS = COS(DTL) + DXHD = DRD*DCOSLS-DRLD*DSINLS + DYHD = DRD*DSINLS+DRLD*DCOSLS + +* Influence of eccentricity, evection and variation on the +* geocentric motion of the Moon + PERTL = 0.0 + PERTLD = 0.0 + PERTP = 0.0 + PERTPD = 0.0 + DO K=1,3 + A = SNGL(MOD(DCARGM(1,K)+DT*DCARGM(2,K), DC2PI)) + SINA = SIN(A) + COSA = COS(A) + PERTL = PERTL +CCAMPM(1,K)*SINA + PERTLD = PERTLD+CCAMPM(2,K)*COSA + PERTP = PERTP +CCAMPM(3,K)*COSA + PERTPD = PERTPD-CCAMPM(4,K)*SINA + END DO + +* Heliocentric motion of the Earth + TL = FORBEL(2)+PERTL + SINLM = SIN(TL) + COSLM = COS(TL) + SIGMA = CCKM/(1.0+PERTP) + A = SIGMA*(CCMLD+PERTLD) + B = SIGMA*PERTPD + DXHD = DXHD+DBLE(A*SINLM)+DBLE(B*COSLM) + DYHD = DYHD-DBLE(A*COSLM)+DBLE(B*SINLM) + DZHD = -DBLE(SIGMA*CCFDI*COS(FORBEL(3))) + +* Barycentric motion of the Earth + DXBD = DXHD*DC1MME + DYBD = DYHD*DC1MME + DZBD = DZHD*DC1MME + DO K=1,4 + PLON = FORBEL(K+3) + POMG = SORBEL(K+1) + PECC = SORBEL(K+9) + TL = MOD(PLON+2.0*PECC*SIN(PLON-POMG), CC2PI) + SINLP(K) = SIN(TL) + COSLP(K) = COS(TL) + DXBD = DXBD+DBLE(CCPAMV(K)*(SINLP(K)+PECC*SIN(POMG))) + DYBD = DYBD-DBLE(CCPAMV(K)*(COSLP(K)+PECC*COS(POMG))) + DZBD = DZBD-DBLE(CCPAMV(K)*SORBEL(K+13)*COS(PLON-SORBEL(K+5))) + END DO + +* Transition to mean equator of date + DCOSEP = COS(DEPS) + DSINEP = SIN(DEPS) + DYAHD = DCOSEP*DYHD-DSINEP*DZHD + DZAHD = DSINEP*DYHD+DCOSEP*DZHD + DYABD = DCOSEP*DYBD-DSINEP*DZBD + DZABD = DSINEP*DYBD+DCOSEP*DZBD + +* Heliocentric coordinates of the Earth + DR = DPSI*D1PDRO + FLATM = CCIM*SIN(FORBEL(3)) + A = SIGMA*COS(FLATM) + DXH = DR*DCOSLS-DBLE(A*COSLM) + DYH = DR*DSINLS-DBLE(A*SINLM) + DZH = -DBLE(SIGMA*SIN(FLATM)) + +* Barycentric coordinates of the Earth + DXB = DXH*DC1MME + DYB = DYH*DC1MME + DZB = DZH*DC1MME + DO K=1,4 + FLAT = SORBEL(K+13)*SIN(FORBEL(K+3)-SORBEL(K+5)) + A = CCPAM(K)*(1.0-SORBEL(K+9)*COS(FORBEL(K+3)-SORBEL(K+1))) + B = A*COS(FLAT) + DXB = DXB-DBLE(B*COSLP(K)) + DYB = DYB-DBLE(B*SINLP(K)) + DZB = DZB-DBLE(A*SIN(FLAT)) + END DO + +* Transition to mean equator of date + DYAH = DCOSEP*DYH-DSINEP*DZH + DZAH = DSINEP*DYH+DCOSEP*DZH + DYAB = DCOSEP*DYB-DSINEP*DZB + DZAB = DSINEP*DYB+DCOSEP*DZB + +* Copy result components into vectors, correcting for FK4 equinox + DEPJ=slEPJ(DATE) + DEQCOR = DS2R*(0.035D0+0.00085D0*(DEPJ-B1950)) + DVH(1) = DXHD-DEQCOR*DYAHD + DVH(2) = DYAHD+DEQCOR*DXHD + DVH(3) = DZAHD + DVB(1) = DXBD-DEQCOR*DYABD + DVB(2) = DYABD+DEQCOR*DXBD + DVB(3) = DZABD + DPH(1) = DXH-DEQCOR*DYAH + DPH(2) = DYAH+DEQCOR*DXH + DPH(3) = DZAH + DPB(1) = DXB-DEQCOR*DYAB + DPB(2) = DYAB+DEQCOR*DXB + DPB(3) = DZAB + +* Was precession to another equinox requested? + IF (IDEQ.NE.0) THEN + +* Yes: compute precession matrix from MJD DATE to Julian epoch DEQX + CALL slPREC(DEPJ,DEQX,DPREMA) + +* Rotate DVH + DO J=1,3 + W=0D0 + DO I=1,3 + W=W+DPREMA(J,I)*DVH(I) + END DO + VW(J)=W + END DO + DO J=1,3 + DVH(J)=VW(J) + END DO + +* Rotate DVB + DO J=1,3 + W=0D0 + DO I=1,3 + W=W+DPREMA(J,I)*DVB(I) + END DO + VW(J)=W + END DO + DO J=1,3 + DVB(J)=VW(J) + END DO + +* Rotate DPH + DO J=1,3 + W=0D0 + DO I=1,3 + W=W+DPREMA(J,I)*DPH(I) + END DO + VW(J)=W + END DO + DO J=1,3 + DPH(J)=VW(J) + END DO + +* Rotate DPB + DO J=1,3 + W=0D0 + DO I=1,3 + W=W+DPREMA(J,I)*DPB(I) + END DO + VW(J)=W + END DO + DO J=1,3 + DPB(J)=VW(J) + END DO + END IF + + END -- cgit