.TH GRADLS 3M .SH NAME gradls .SH DESCRIPTION subroutine gradls.f source Bevington, pages 220-222. purpose make gradient-search least-squares fit to data with a specified function which is not linear in coefficients usage call gradls (x, y, sigmay, npts, nterms, mode, a, deltaa, yfit, chisqr) description of parameters x - array of data points for independent variable y - array of data points for dependent variable sigmay - array of standard deviations for y data points npts - number of pairs of data points nterms - number of parameters mode - determines method of weighting least-squares fit +1 (instrumental) weight(i) = 1./sigmay(i)**2 0 (no weighting) weight(i) = 1. -1 (statistical) weight(i) = 1./y(i) a - array of parameters deltaa - array of increments for parameters a yfit - array of calculated values of y chisqr - reduced chi square for fit subroutines and function subprograms required functn (x, i, a) evaluates the fitting function for the ith term fchisq (y, sigmay, npts, nfree, mode, yfit) evaluates reduced chi squared for fit to data comments valid for nterms up to 10