# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # CV_BCHEB -- Procedure to evaluate all the non-zero Chebyshev functions for # a set of points and given order. procedure dcv_bcheb (x, npts, order, k1, k2, basis) double x[npts] # array of data points int npts # number of points int order # order of polynomial, order = 1, constant double k1, k2 # normalizing constants double basis[ARB] # basis functions int k, bptr begin bptr = 1 do k = 1, order { if (k == 1) call amovkd (double(1.0), basis, npts) else if (k == 2) call altad (x, basis[bptr], npts, k1, k2) else { call amuld (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call amulkd (basis[bptr], double(2.0), basis[bptr], npts) call asubd (basis[bptr], basis[bptr-2*npts], basis[bptr], npts) } bptr = bptr + npts } end # CV_BLEG -- Procedure to evaluate all the non zero Legendre function # for a given order and set of points. procedure dcv_bleg (x, npts, order, k1, k2, basis) double x[npts] # number of data points int npts # number of points int order # order of polynomial, 1 is a constant double k1, k2 # normalizing constants double basis[ARB] # array of basis functions int k, bptr double ri, ri1, ri2 begin bptr = 1 do k = 1, order { if (k == 1) call amovkd (double(1.0), basis, npts) else if (k == 2) call altad (x, basis[bptr], npts, k1, k2) else { ri = k ri1 = (double(2.0) * ri - double(3.0)) / (ri - double(1.0)) ri2 = - (ri - double(2.0)) / (ri - double(1.0)) call amuld (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call awsud (basis[bptr], basis[bptr-2*npts], basis[bptr], npts, ri1, ri2) } bptr = bptr + npts } end # CV_BSPLINE1 -- Evaluate all the non-zero spline1 functions for a set # of points. procedure dcv_bspline1 (x, npts, npieces, k1, k2, basis, left) double x[npts] # set of data points int npts # number of points int npieces # number of polynomial pieces minus 1 double k1, k2 # normalizing constants double basis[ARB] # basis functions int left[ARB] # indices of the appropriate spline functions int k begin call altad (x, basis[1+npts], npts, k1, k2) call achtdi (basis[1+npts], left, npts) call aminki (left, npieces, left, npts) do k = 1, npts { basis[npts+k] = max (double(0.0), min (double(1.0), basis[npts+k] - left[k])) basis[k] = max (double(0.0), min (double(1.0), double(1.0) - basis[npts+k])) } end # CV_BSPLINE3 -- Procedure to evaluate all the non-zero basis functions # for a cubic spline. procedure dcv_bspline3 (x, npts, npieces, k1, k2, basis, left) double x[npts] # array of data points int npts # number of data points int npieces # number of polynomial pieces minus 1 double k1, k2 # normalizing constants double basis[ARB] # array of basis functions int left[ARB] # array of indices for first non-zero spline int i pointer sp, sx, tx double dsx, dtx begin # allocate space call smark (sp) call salloc (sx, npts, TY_DOUBLE) call salloc (tx, npts, TY_DOUBLE) # calculate the index of the first non-zero coeff call altad (x, Memd[sx], npts, k1, k2) call achtdi (Memd[sx], left, npts) call aminki (left, npieces, left, npts) do i = 1, npts { Memd[sx+i-1] = max (double(0.0), min (double(1.0), Memd[sx+i-1] - left[i])) Memd[tx+i-1] = max (double(0.0), min (double(1.0), double(1.0) - Memd[sx+i-1])) } # calculate the basis function #call apowk$t (Mem$t[tx], 3, basis, npts) do i = 1, npts { dsx = Memd[sx+i-1] dtx = Memd[tx+i-1] basis[i] = dtx * dtx * dtx basis[npts+i] = double(1.0) + dtx * (double(3.0) + dtx * (double(3.0) - double(3.0) * dtx)) basis[2*npts+i] = double(1.0) + dsx * (double(3.0) + dsx * (double(3.0) - double(3.0) * dsx)) basis[3*npts+i] = dsx * dsx * dsx } #call apowk$t (Mem$t[sx], 3, basis[1+3*npts], npts) # release space call sfree (sp) end