# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # CV_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that # the coefficients have been calculated. procedure dcv_evcheb (coeff, x, yfit, npts, order, k1, k2) double coeff[ARB] # 1D array of coefficients double x[npts] # x values of points to be evaluated double yfit[npts] # the fitted points int npts # number of points to be evaluated int order # order of the polynomial, 1 = constant double k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp double c1, c2 begin # fit a constant if (order == 1) { call amovkd (coeff[1], yfit, npts) return } # fit a linear function c1 = k2 * coeff[2] c2 = c1 * k1 + coeff[1] call altmd (x, yfit, npts, c1, c2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_DOUBLE) call salloc (pn, npts, TY_DOUBLE) call salloc (pnm1, npts, TY_DOUBLE) call salloc (pnm2, npts, TY_DOUBLE) # a higher order polynomial call amovkd (double(1.0), Memd[pnm2], npts) call altad (x, Memd[sx], npts, k1, k2) call amovd (Memd[sx], Memd[pnm1], npts) call amulkd (Memd[sx], double(2.0), Memd[sx], npts) do i = 3, order { call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts) call asubd (Memd[pn], Memd[pnm2], Memd[pn], npts) if (i < order) { call amovd (Memd[pnm1], Memd[pnm2], npts) call amovd (Memd[pn], Memd[pnm1], npts) } call amulkd (Memd[pn], coeff[i], Memd[pn], npts) call aaddd (yfit, Memd[pn], yfit, npts) } # free temporary space call sfree (sp) end # CV_EVLEG -- Procedure to evaluate a Legendre polynomial assuming that # the coefficients have been calculated. procedure dcv_evleg (coeff, x, yfit, npts, order, k1, k2) double coeff[ARB] # 1D array of coefficients double x[npts] # x values of points to be evaluated double yfit[npts] # the fitted points int npts # number of data points int order # order of the polynomial, 1 = constant double k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp double ri, ri1, ri2 begin # fit a constant if (order == 1) { call amovkd (coeff[1], yfit, npts) return } # fit a linear function ri1 = k2 * coeff[2] ri2 = ri1 * k1 + coeff[1] call altmd (x, yfit, npts, ri1, ri2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_DOUBLE) call salloc (pn, npts, TY_DOUBLE) call salloc (pnm1, npts, TY_DOUBLE) call salloc (pnm2, npts, TY_DOUBLE) # a higher order polynomial call amovkd (double(1.0), Memd[pnm2], npts) call altad (x, Memd[sx], npts, k1, k2) call amovd (Memd[sx], Memd[pnm1], npts) do i = 3, order { ri = i ri1 = (double(2.0) * ri - double(3.0)) / (ri - double(1.0)) ri2 = - (ri - double(2.0)) / (ri - double(1.0)) call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts) call awsud (Memd[pn], Memd[pnm2], Memd[pn], npts, ri1, ri2) if (i < order) { call amovd (Memd[pnm1], Memd[pnm2], npts) call amovd (Memd[pn], Memd[pnm1], npts) } call amulkd (Memd[pn], coeff[i], Memd[pn], npts) call aaddd (yfit, Memd[pn], yfit, npts) } # free temporary space call sfree (sp) end # CV_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function # assuming that the coefficients have been calculated. procedure dcv_evspline1 (coeff, x, yfit, npts, npieces, k1, k2) double coeff[ARB] # array of coefficients double x[npts] # array of x values double yfit[npts] # array of fitted values int npts # number of data points int npieces # number of fitted points minus 1 double k1, k2 # normalizing constants int j pointer sx, tx, azindex, aindex, index pointer sp begin # allocate the required space call smark (sp) call salloc (sx, npts, TY_DOUBLE) call salloc (tx, npts, TY_DOUBLE) call salloc (index, npts, TY_INT) # calculate the index of the first non-zero coefficient # for each point call altad (x, Memd[sx], npts, k1, k2) call achtdi (Memd[sx], Memi[index], npts) call aminki (Memi[index], npieces, Memi[index], npts) # transform sx to range 0 to 1 azindex = sx - 1 do j = 1, npts { aindex = azindex + j Memd[aindex] = max (double(0.0), min (double(1.0), Memd[aindex] - Memi[index+j-1])) Memd[tx+j-1] = max (double(0.0), min (double(1.0), double(1.0) - Memd[aindex])) } # calculate yfit using the two non-zero basis function do j = 1, npts yfit[j] = Memd[tx+j-1] * coeff[1+Memi[index+j-1]] + Memd[sx+j-1] * coeff[2+Memi[index+j-1]] # free space call sfree (sp) end # CV_EVSPLINE3 -- Procedure to evaluate the cubic spline assuming that # the coefficients of the fit are known. procedure dcv_evspline3 (coeff, x, yfit, npts, npieces, k1, k2) double coeff[ARB] # array of coeffcients double x[npts] # array of x values double yfit[npts] # array of fitted values int npts # number of data points int npieces # number of polynomial pieces double k1, k2 # normalizing constants int i, j pointer sx, tx, temp, index, sp begin # allocate the required space call smark (sp) call salloc (sx, npts, TY_DOUBLE) call salloc (tx, npts, TY_DOUBLE) call salloc (temp, npts, TY_DOUBLE) call salloc (index, npts, TY_INT) # calculate to which coefficients the x values contribute to call altad (x, Memd[sx], npts, k1, k2) call achtdi (Memd[sx], Memi[index], npts) call aminki (Memi[index], npieces, Memi[index], npts) # transform sx to range 0 to 1 do j = 1, npts { Memd[sx+j-1] = max (double(0.0), min (double(1.0), Memd[sx+j-1] - Memi[index+j-1])) Memd[tx+j-1] = max (double(0.0), min (double(1.0), double(1.0) - Memd[sx+j-1])) } # calculate yfit using the four non-zero basis function call aclrd (yfit, npts) do i = 1, 4 { switch (i) { case 1: call apowkd (Memd[tx], 3, Memd[temp], npts) case 2: do j = 1, npts { Memd[temp+j-1] = double(1.0) + Memd[tx+j-1] * (double(3.0) + Memd[tx+j-1] * (double(3.0) - double(3.0) * Memd[tx+j-1])) } case 3: do j = 1, npts { Memd[temp+j-1] = double(1.0) + Memd[sx+j-1] * (double(3.0) + Memd[sx+j-1] * (double(3.0) - double(3.0) * Memd[sx+j-1])) } case 4: call apowkd (Memd[sx], 3, Memd[temp], npts) } do j = 1, npts Memd[temp+j-1] = Memd[temp+j-1] * coeff[i+Memi[index+j-1]] call aaddd (yfit, Memd[temp], yfit, npts) } # free space call sfree (sp) end