# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # CV_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that # the coefficients have been calculated. procedure rcv_evcheb (coeff, x, yfit, npts, order, k1, k2) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real yfit[npts] # the fitted points int npts # number of points to be evaluated int order # order of the polynomial, 1 = constant real k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp real c1, c2 begin # fit a constant if (order == 1) { call amovkr (coeff[1], yfit, npts) return } # fit a linear function c1 = k2 * coeff[2] c2 = c1 * k1 + coeff[1] call altmr (x, yfit, npts, c1, c2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (pn, npts, TY_REAL) call salloc (pnm1, npts, TY_REAL) call salloc (pnm2, npts, TY_REAL) # a higher order polynomial call amovkr (real(1.0), Memr[pnm2], npts) call altar (x, Memr[sx], npts, k1, k2) call amovr (Memr[sx], Memr[pnm1], npts) call amulkr (Memr[sx], real(2.0), Memr[sx], npts) do i = 3, order { call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts) call asubr (Memr[pn], Memr[pnm2], Memr[pn], npts) if (i < order) { call amovr (Memr[pnm1], Memr[pnm2], npts) call amovr (Memr[pn], Memr[pnm1], npts) } call amulkr (Memr[pn], coeff[i], Memr[pn], npts) call aaddr (yfit, Memr[pn], yfit, npts) } # free temporary space call sfree (sp) end # CV_EVLEG -- Procedure to evaluate a Legendre polynomial assuming that # the coefficients have been calculated. procedure rcv_evleg (coeff, x, yfit, npts, order, k1, k2) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real yfit[npts] # the fitted points int npts # number of data points int order # order of the polynomial, 1 = constant real k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp real ri, ri1, ri2 begin # fit a constant if (order == 1) { call amovkr (coeff[1], yfit, npts) return } # fit a linear function ri1 = k2 * coeff[2] ri2 = ri1 * k1 + coeff[1] call altmr (x, yfit, npts, ri1, ri2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (pn, npts, TY_REAL) call salloc (pnm1, npts, TY_REAL) call salloc (pnm2, npts, TY_REAL) # a higher order polynomial call amovkr (real(1.0), Memr[pnm2], npts) call altar (x, Memr[sx], npts, k1, k2) call amovr (Memr[sx], Memr[pnm1], npts) do i = 3, order { ri = i ri1 = (real(2.0) * ri - real(3.0)) / (ri - real(1.0)) ri2 = - (ri - real(2.0)) / (ri - real(1.0)) call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts) call awsur (Memr[pn], Memr[pnm2], Memr[pn], npts, ri1, ri2) if (i < order) { call amovr (Memr[pnm1], Memr[pnm2], npts) call amovr (Memr[pn], Memr[pnm1], npts) } call amulkr (Memr[pn], coeff[i], Memr[pn], npts) call aaddr (yfit, Memr[pn], yfit, npts) } # free temporary space call sfree (sp) end # CV_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function # assuming that the coefficients have been calculated. procedure rcv_evspline1 (coeff, x, yfit, npts, npieces, k1, k2) real coeff[ARB] # array of coefficients real x[npts] # array of x values real yfit[npts] # array of fitted values int npts # number of data points int npieces # number of fitted points minus 1 real k1, k2 # normalizing constants int j pointer sx, tx, azindex, aindex, index pointer sp begin # allocate the required space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (tx, npts, TY_REAL) call salloc (index, npts, TY_INT) # calculate the index of the first non-zero coefficient # for each point call altar (x, Memr[sx], npts, k1, k2) call achtri (Memr[sx], Memi[index], npts) call aminki (Memi[index], npieces, Memi[index], npts) # transform sx to range 0 to 1 azindex = sx - 1 do j = 1, npts { aindex = azindex + j Memr[aindex] = max (real(0.0), min (real(1.0), Memr[aindex] - Memi[index+j-1])) Memr[tx+j-1] = max (real(0.0), min (real(1.0), real(1.0) - Memr[aindex])) } # calculate yfit using the two non-zero basis function do j = 1, npts yfit[j] = Memr[tx+j-1] * coeff[1+Memi[index+j-1]] + Memr[sx+j-1] * coeff[2+Memi[index+j-1]] # free space call sfree (sp) end # CV_EVSPLINE3 -- Procedure to evaluate the cubic spline assuming that # the coefficients of the fit are known. procedure rcv_evspline3 (coeff, x, yfit, npts, npieces, k1, k2) real coeff[ARB] # array of coeffcients real x[npts] # array of x values real yfit[npts] # array of fitted values int npts # number of data points int npieces # number of polynomial pieces real k1, k2 # normalizing constants int i, j pointer sx, tx, temp, index, sp begin # allocate the required space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (tx, npts, TY_REAL) call salloc (temp, npts, TY_REAL) call salloc (index, npts, TY_INT) # calculate to which coefficients the x values contribute to call altar (x, Memr[sx], npts, k1, k2) call achtri (Memr[sx], Memi[index], npts) call aminki (Memi[index], npieces, Memi[index], npts) # transform sx to range 0 to 1 do j = 1, npts { Memr[sx+j-1] = max (real(0.0), min (real(1.0), Memr[sx+j-1] - Memi[index+j-1])) Memr[tx+j-1] = max (real(0.0), min (real(1.0), real(1.0) - Memr[sx+j-1])) } # calculate yfit using the four non-zero basis function call aclrr (yfit, npts) do i = 1, 4 { switch (i) { case 1: call apowkr (Memr[tx], 3, Memr[temp], npts) case 2: do j = 1, npts { Memr[temp+j-1] = real(1.0) + Memr[tx+j-1] * (real(3.0) + Memr[tx+j-1] * (real(3.0) - real(3.0) * Memr[tx+j-1])) } case 3: do j = 1, npts { Memr[temp+j-1] = real(1.0) + Memr[sx+j-1] * (real(3.0) + Memr[sx+j-1] * (real(3.0) - real(3.0) * Memr[sx+j-1])) } case 4: call apowkr (Memr[sx], 3, Memr[temp], npts) } do j = 1, npts Memr[temp+j-1] = Memr[temp+j-1] * coeff[i+Memi[index+j-1]] call aaddr (yfit, Memr[temp], yfit, npts) } # free space call sfree (sp) end