# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # GS_BPOL -- Procedure to evaluate all the non-zero polynomial functions for # a set of points and given order. procedure rgs_bpol (x, npts, order, k1, k2, basis) real x[npts] # array of data points int npts # number of points int order # order of polynomial, order = 1, constant real k1, k2 # normalizing constants real basis[ARB] # basis functions int bptr, k begin bptr = 1 do k = 1, order { if (k == 1) call amovkr (1.0, basis, npts) else if (k == 2) call amovr (x, basis[bptr], npts) else call amulr (basis[bptr-npts], x, basis[bptr], npts) bptr = bptr + npts } end # GS_BCHEB -- Procedure to evaluate all the non-zero Chebyshev functions for # a set of points and given order. procedure rgs_bcheb (x, npts, order, k1, k2, basis) real x[npts] # array of data points int npts # number of points int order # order of polynomial, order = 1, constant real k1, k2 # normalizing constants real basis[ARB] # basis functions int k, bptr begin bptr = 1 do k = 1, order { if (k == 1) call amovkr (1.0, basis, npts) else if (k == 2) call altar (x, basis[bptr], npts, k1, k2) else { call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call amulkr (basis[bptr], 2.0, basis[bptr], npts) call asubr (basis[bptr], basis[bptr-2*npts], basis[bptr], npts) } bptr = bptr + npts } end # GS_BLEG -- Procedure to evaluate all the non zero Legendre function # for a given order and set of points. procedure rgs_bleg (x, npts, order, k1, k2, basis) real x[npts] # number of data points int npts # number of points int order # order of polynomial, 1 is a constant real k1, k2 # normalizing constants real basis[ARB] # array of basis functions int k, bptr real ri, ri1, ri2 begin bptr = 1 do k = 1, order { if (k == 1) call amovkr (1.0, basis, npts) else if (k == 2) call altar (x, basis[bptr], npts, k1, k2) else { ri = k ri1 = (2. * ri - 3.) / (ri - 1.) ri2 = - (ri - 2.) / (ri - 1.) call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call awsur (basis[bptr], basis[bptr-2*npts], basis[bptr], npts, ri1, ri2) } bptr = bptr + npts } end