# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # GS_1DEVPOLY -- Procedure to evaulate a 1D polynomial procedure rgs_1devpoly (coeff, x, yfit, npts, order, k1, k2) real coeff[ARB] # EV array of coefficients real x[npts] # x values of points to be evaluated real yfit[npts] # the fitted points int npts # number of points to be evaluated int order # order of the polynomial, 1 = constant real k1, k2 # normalizing constants int i pointer sp, temp begin # fit a constant call amovkr (coeff[1], yfit, npts) if (order == 1) return # fit a linear function call altmr (x, yfit, npts, coeff[2], coeff[1]) if (order == 2) return call smark (sp) call salloc (temp, npts, TY_REAL) # accumulate the output vector call amovr (x, Memr[temp], npts) do i = 3, order { call amulr (Memr[temp], x, Memr[temp], npts) call awsur (yfit, Memr[temp], yfit, npts, 1.0, coeff[i]) } call sfree (sp) end # GS_1DEVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that # the coefficients have been calculated. procedure rgs_1devcheb (coeff, x, yfit, npts, order, k1, k2) real coeff[ARB] # EV array of coefficients real x[npts] # x values of points to be evaluated real yfit[npts] # the fitted points int npts # number of points to be evaluated int order # order of the polynomial, 1 = constant real k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp real c1, c2 begin # fit a constant call amovkr (coeff[1], yfit, npts) if (order == 1) return # fit a linear function c1 = k2 * coeff[2] c2 = c1 * k1 + coeff[1] call altmr (x, yfit, npts, c1, c2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (pn, npts, TY_REAL) call salloc (pnm1, npts, TY_REAL) call salloc (pnm2, npts, TY_REAL) # a higher order polynomial call amovkr (1., Memr[pnm2], npts) call altar (x, Memr[sx], npts, k1, k2) call amovr (Memr[sx], Memr[pnm1], npts) call amulkr (Memr[sx], 2.0, Memr[sx], npts) do i = 3, order { call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts) call asubr (Memr[pn], Memr[pnm2], Memr[pn], npts) if (i < order) { call amovr (Memr[pnm1], Memr[pnm2], npts) call amovr (Memr[pn], Memr[pnm1], npts) } call amulkr (Memr[pn], coeff[i], Memr[pn], npts) call aaddr (yfit, Memr[pn], yfit, npts) } # free temporary space call sfree (sp) end # GS_1DEVLEG -- Procedure to evaluate a Legendre polynomial assuming that # the coefficients have been calculated. procedure rgs_1devleg (coeff, x, yfit, npts, order, k1, k2) real coeff[ARB] # EV array of coefficients real x[npts] # x values of points to be evaluated real yfit[npts] # the fitted points int npts # number of data points int order # order of the polynomial, 1 = constant real k1, k2 # normalizing constants int i pointer sx, pn, pnm1, pnm2 pointer sp real ri, ri1, ri2 begin # fit a constant call amovkr (coeff[1], yfit, npts) if (order == 1) return # fit a linear function ri1 = k2 * coeff[2] ri2 = ri1 * k1 + coeff[1] call altmr (x, yfit, npts, ri1, ri2) if (order == 2) return # allocate temporary space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (pn, npts, TY_REAL) call salloc (pnm1, npts, TY_REAL) call salloc (pnm2, npts, TY_REAL) # a higher order polynomial call amovkr (1., Memr[pnm2], npts) call altar (x, Memr[sx], npts, k1, k2) call amovr (Memr[sx], Memr[pnm1], npts) do i = 3, order { ri = i ri1 = (2. * ri - 3.) / (ri - 1.) ri2 = - (ri - 2.) / (ri - 1.) call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts) call awsur (Memr[pn], Memr[pnm2], Memr[pn], npts, ri1, ri2) if (i < order) { call amovr (Memr[pnm1], Memr[pnm2], npts) call amovr (Memr[pn], Memr[pnm1], npts) } call amulkr (Memr[pn], coeff[i], Memr[pn], npts) call aaddr (yfit, Memr[pn], yfit, npts) } # free temporary space call sfree (sp) end