# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include # GS_DERPOLY -- Evaluate the new polynomial derivative surface. procedure rgs_derpoly (coeff, x, y, zfit, npts, xterms, xorder, yorder, nxder, nyder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y int nxder,nyder # order of the derivatives in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, xbptr, ybptr, accum begin # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_dpol (x, npts, xorder, nxder, k1x, k2x, Memr[xb]) call rgs_dpol (y, npts, yorder, nyder, k1y, k2y, Memr[yb]) # accumulate the output vector cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { call aclrr (Memr[accum], npts) xbptr = xb do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { call amulr (Memr[xb], Memr[yb], zfit, npts) call amulkr (zfit, coeff[1], zfit, npts) xbptr = xb + npts do k = 1, xorder - 1 { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k+1]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } call sfree (sp) end # GS_DERCHEB -- Evaluate the new Chebyshev polynomial derivative surface. procedure rgs_dercheb (coeff, x, y, zfit, npts, xterms, xorder, yorder, nxder, nyder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y int nxder,nyder # order of the derivatives in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, xbptr, ybptr, accum begin # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_dcheb (x, npts, xorder, nxder, k1x, k2x, Memr[xb]) call rgs_dcheb (y, npts, yorder, nyder, k1y, k2y, Memr[yb]) # accumulate thr output vector cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { call aclrr (Memr[accum], npts) xbptr = xb do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { call amulr (Memr[xb], Memr[yb], zfit, npts) call amulkr (zfit, coeff[1], zfit, npts) xbptr = xb + npts do k = 1, xorder - 1 { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k+1]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } # free temporary space call sfree (sp) end # GS_DERLEG -- Evaluate the new Legendre polynomial derivative surface. procedure rgs_derleg (coeff, x, y, zfit, npts, xterms, xorder, yorder, nxder, nyder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y int nxder,nyder # order of the derivatives in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, accum, xbptr, ybptr begin # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_dleg (x, npts, xorder, nxder, k1x, k2x, Memr[xb]) call rgs_dleg (y, npts, yorder, nyder, k1y, k2y, Memr[yb]) cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { xbptr = xb call aclrr (Memr[accum], npts) do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { call amulr (Memr[xb], Memr[yb], zfit, npts) call amulkr (zfit, coeff[1], zfit, npts) xbptr = xb + npts do k = 1, xorder - 1 { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k+1]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } # free temporary space call sfree (sp) end