# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include # GS_EVPOLY -- Procedure to evluate the polynomials procedure rgs_evpoly (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, xbptr, ybptr, accum begin # fit a constant if (xorder == 1 && yorder == 1) { call amovkr (coeff[1], zfit, npts) return } # fit first order in x and y if (xorder == 2 && yorder == 1) { call altmr (x, zfit, npts, coeff[2], coeff[1]) return } if (yorder == 2 && xorder == 1) { call altmr (x, zfit, npts, coeff[2], coeff[1]) return } if (xorder == 2 && yorder == 2 && xterms == NO) { do i = 1, npts zfit[i] = coeff[1] + x[i] * coeff[2] + y[i] * coeff[3] return } # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_bpol (x, npts, xorder, k1x, k2x, Memr[xb]) call rgs_bpol (y, npts, yorder, k1y, k2y, Memr[yb]) # accumulate the output vector cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { call aclrr (Memr[accum], npts) xbptr = xb do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { xbptr = xb do k = 1, xorder { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } call sfree (sp) end # GS_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that # the coefficients have been calculated. procedure rgs_evcheb (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, xbptr, ybptr, accum begin # fit a constant if (xorder == 1 && yorder == 1) { call amovkr (coeff[1], zfit, npts) return } # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_bcheb (x, npts, xorder, k1x, k2x, Memr[xb]) call rgs_bcheb (y, npts, yorder, k1y, k2y, Memr[yb]) # accumulate thr output vector cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { call aclrr (Memr[accum], npts) xbptr = xb do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { xbptr = xb do k = 1, xorder { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } # free temporary space call sfree (sp) end # GS_EVLEG -- Procedure to evaluate a Chebyshev polynomial assuming that # the coefficients have been calculated. procedure rgs_evleg (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x, k1y, k2y) real coeff[ARB] # 1D array of coefficients real x[npts] # x values of points to be evaluated real y[npts] real zfit[npts] # the fitted points int npts # number of points to be evaluated int xterms # cross terms ? int xorder,yorder # order of the polynomials in x and y real k1x, k2x # normalizing constants real k1y, k2y int i, k, cptr, maxorder, xincr pointer sp, xb, yb, accum, xbptr, ybptr begin # fit a constant if (xorder == 1 && yorder == 1) { call amovkr (coeff[1], zfit, npts) return } # allocate temporary space for the basis functions call smark (sp) call salloc (xb, xorder * npts, TY_REAL) call salloc (yb, yorder * npts, TY_REAL) call salloc (accum, npts, TY_REAL) # calculate basis functions call rgs_bleg (x, npts, xorder, k1x, k2x, Memr[xb]) call rgs_bleg (y, npts, yorder, k1y, k2y, Memr[yb]) cptr = 0 call aclrr (zfit, npts) if (xterms != GS_XNONE) { maxorder = max (xorder + 1, yorder + 1) xincr = xorder ybptr = yb do i = 1, yorder { xbptr = xb call aclrr (Memr[accum], npts) do k = 1, xincr { call awsur (Memr[accum], Memr[xbptr], Memr[accum], npts, 1.0, coeff[cptr+k]) xbptr = xbptr + npts } call gs_asumvpr (Memr[accum], Memr[ybptr], zfit, zfit, npts) cptr = cptr + xincr ybptr = ybptr + npts switch (xterms) { case GS_XHALF: if ((i + xorder + 1) > maxorder) xincr = xincr - 1 default: ; } } } else { xbptr = xb do k = 1, xorder { call awsur (zfit, Memr[xbptr], zfit, npts, 1.0, coeff[k]) xbptr = xbptr + npts } ybptr = yb + npts do k = 1, yorder - 1 { call awsur (zfit, Memr[ybptr], zfit, npts, 1.0, coeff[xorder+k]) ybptr = ybptr + npts } } # free temporary space call sfree (sp) end # GS_ASUMVP -- Procedure to add the product of two vectors to another vector procedure gs_asumvpr (a, b, c, d, npts) real a[ARB] # first input vector real b[ARB] # second input vector real c[ARB] # third vector real d[ARB] # output vector int npts # number of points int i begin do i = 1, npts d[i] = c[i] + a[i] * b[i] end