c c----------------------------------------------------------------------- c subroutine: fft842 c fast fourier transform for n=2**m c complex input c----------------------------------------------------------------------- c subroutine fft842(in, n, x, y) c c this program replaces the vector z=x+iy by its finite c discrete, complex fourier transform if in=0. the inverse transform c is calculated for in=1. it performs as many base c 8 iterations as possible and then finishes with a base 4 iteration c or a base 2 iteration if needed. c c the subroutine is called as subroutine fft842 (in,n,x,y). c the integer n (a power of 2), the n real location array x, and c the n real location array y must be supplied to the subroutine. c dimension x(2), y(2), l(15) common /con2/ pi2, p7 equivalence (l15,l(1)), (l14,l(2)), (l13,l(3)), (l12,l(4)), * (l11,l(5)), (l10,l(6)), (l9,l(7)), (l8,l(8)), (l7,l(9)), * (l6,l(10)), (l5,l(11)), (l4,l(12)), (l3,l(13)), (l2,l(14)), * (l1,l(15)) c c c iw is a machine dependent write device number c iw = i1mach(2) c pi2 = 8.*atan(1.) p7 = 1./sqrt(2.) do 10 i=1,15 m = i nt = 2**i if (n.eq.nt) go to 20 10 continue write (iw,9999) 9999 format (35h n is not a power of two for fft842) stop 20 n2pow = m nthpo = n fn = nthpo if (in.eq.1) go to 40 do 30 i=1,nthpo y(i) = -y(i) 30 continue 40 n8pow = n2pow/3 if (n8pow.eq.0) go to 60 c c radix 8 passes,if any. c do 50 ipass=1,n8pow nxtlt = 2**(n2pow-3*ipass) lengt = 8*nxtlt call r8tx(nxtlt, nthpo, lengt, x(1), x(nxtlt+1), x(2*nxtlt+1), * x(3*nxtlt+1), x(4*nxtlt+1), x(5*nxtlt+1), x(6*nxtlt+1), * x(7*nxtlt+1), y(1), y(nxtlt+1), y(2*nxtlt+1), y(3*nxtlt+1), * y(4*nxtlt+1), y(5*nxtlt+1), y(6*nxtlt+1), y(7*nxtlt+1)) 50 continue c c is there a four factor left c 60 if (n2pow-3*n8pow-1) 90, 70, 80 c c go through the base 2 iteration c c 70 call r2tx(nthpo, x(1), x(2), y(1), y(2)) go to 90 c c go through the base 4 iteration c 80 call r4tx(nthpo, x(1), x(2), x(3), x(4), y(1), y(2), y(3), y(4)) c 90 do 110 j=1,15 l(j) = 1 if (j-n2pow) 100, 100, 110 100 l(j) = 2**(n2pow+1-j) 110 continue ij = 1 do 130 j1=1,l1 do 130 j2=j1,l2,l1 do 130 j3=j2,l3,l2 do 130 j4=j3,l4,l3 do 130 j5=j4,l5,l4 do 130 j6=j5,l6,l5 do 130 j7=j6,l7,l6 do 130 j8=j7,l8,l7 do 130 j9=j8,l9,l8 do 130 j10=j9,l10,l9 do 130 j11=j10,l11,l10 do 130 j12=j11,l12,l11 do 130 j13=j12,l13,l12 do 130 j14=j13,l14,l13 do 130 ji=j14,l15,l14 if (ij-ji) 120, 130, 130 120 r = x(ij) x(ij) = x(ji) x(ji) = r fi = y(ij) y(ij) = y(ji) y(ji) = fi 130 ij = ij + 1 if (in.eq.1) go to 150 do 140 i=1,nthpo y(i) = -y(i) 140 continue go to 170 150 do 160 i=1,nthpo x(i) = x(i)/fn y(i) = y(i)/fn 160 continue 170 return end