c c----------------------------------------------------------------------- c subroutine: fsst c fourier synthesis subroutine c----------------------------------------------------------------------- c subroutine fsst(b, n) c c this subroutine synthesizes the real vector b(k), for c k=1,2,...,n, from the fourier coefficients stored in the c b array of size n+2. the dc term is in b(1) with b(2) equal c to 0. the jth harmonic is stored as b(2*j+1) + i b(2*j+2). c the n/2 harmonic is in b(n+1) with b(n+2) equal to 0. c the subroutine is called as fsst(b,n) where n=2**m and c b is the real array discussed above. c dimension b(2) common /const/ pii, p7, p7two, c22, s22, pi2 c c iw is a machine dependent write device number c iw = i1mach(2) c pii = 4.*atan(1.) pi8 = pii/8. p7 = 1./sqrt(2.) p7two = 2.*p7 c22 = cos(pi8) s22 = sin(pi8) pi2 = 2.*pii do 10 i=1,15 m = i nt = 2**i if (n.eq.nt) go to 20 10 continue write (iw,9999) 9999 format (33h n is not a power of two for fsst) stop 20 b(2) = b(n+1) do 30 i=4,n,2 b(i) = -b(i) 30 continue c c scale the input by n c do 40 i=1,n b(i) = b(i)/float(n) 40 continue n4pow = m/2 c c scramble the inputs c call ford2(m, b) call ford1(m, b) c if (n4pow.eq.0) go to 60 nn = 4*n do 50 it=1,n4pow nn = nn/4 int = n/nn call fr4syn(int, nn, b(1), b(int+1), b(2*int+1), b(3*int+1), * b(1), b(int+1), b(2*int+1), b(3*int+1)) 50 continue c c do a radix 2 iteration if one is required c 60 if (m-n4pow*2) 80, 80, 70 70 int = n/2 call fr2tr(int, b(1), b(int+1)) 80 return end