c c----------------------------------------------------------------------- c subroutine: iftaoh c compute idft for real, antisymmetric, odd harmonic, n-point sequence c using n/4-point fft c antisymmetric sequence means x(m)=-x(n-m), m=1,...,n/2-1 c odd harmonic means x(2*k)=0, all k, where x(k) is the dft of x(m) c x(m)has the property x(m)=x(n/2-m), m=0,1,...,n/4-1, x(0)=0 c note: index m is sequence index--not fortran index c----------------------------------------------------------------------- c subroutine iftaoh(x, n, y) dimension x(1), y(1) c c x = real array which on input contains the n/4 imaginary points c of the odd harmonics of the transform of the original time c sequence--i.e. the zero valued real parts are not input nor c are the zero-valued even harmonics c on output x contains the first (n/4+1) points of the original c time sequence (antisymmetrical) c n = true size of input c y = scratch array of size n/4+2 c c c handle n = 2 and n = 4 cases separately c if (n.gt.4) go to 20 if (n.eq.4) go to 10 c c for n=2 assume x(1)=0, x(2)=0, compute idft directly c x(1) = 0. return c c for n=4, assume x(1)=x(3)=0, x(2)=-x(4)=x0, compute idft directly c 10 x(2) = -x(1)/2. x(1) = 0. return c c code for values of n which are multiples of 8 c 20 twopi = 8.*atan(1.0) no2 = n/2 no4 = n/4 no8 = n/8 tpn = twopi/float(n) c c scramble original dft (x(k)) to give y(k) c use recursion to give sin multipliers c cosi = cos(tpn) sini = sin(tpn) cosd = cos(tpn*2.) sind = sin(tpn*2.) do 30 i=1,no8 ind = 2*i ind1 = no4 + 1 - i ak = (x(i)-x(ind1))/2. bk = -(x(i)+x(ind1)) y(ind) = ak y(ind-1) = bk*sini temp = cosi*cosd - sini*sind sini = cosi*sind + sini*cosd cosi = temp 30 continue c c the sequence y(k) is an odd harmonic sequence c use subroutine iftohm to give y(m) c call iftohm(y, no2) c c form x sequence from y sequence c x(2) = y(1)/2. x(1) = 0. if (n.eq.8) return do 40 i=2,no8 ind = 2*i ind1 = no4 + 2 - i x(ind-1) = (y(i)+y(ind1))/2. t1 = (y(i)-y(ind1))/2. x(ind) = t1 + x(ind-2) 40 continue x(no4+1) = y(no8+1) return end