c c----------------------------------------------------------------------- c subroutine: iftasm c compute idft for real, antisymmetric, n-point sequence x(m) using c n/2-point fft c antisymmetric sequence means x(m)=-x(n-m), m=1,...,n/2-1 c note: index m is sequence index--not fortran index c----------------------------------------------------------------------- c subroutine iftasm(x, n, y) dimension x(1), y(1) c c x = imaginary array which on input contains the n/2+1 real points of c the transform of the input--i.e. the zero valued real parts c are not given as input c on output x contains the n/2 points of the time sequence c (antisymmetrical) c n = true size of input c y = scratch array of size n/2+2 c c c for n = 2, assume x(1)=0, x(2)=0 c if (n.gt.2) go to 10 x(1) = 0 x(2) = 0 return 10 twopi = 8.*atan(1.0) c c first compute x1=x(1) term directly c use recursion on the sine cosine terms c no2 = n/2 no4 = n/4 tpn = twopi/float(n) c c scramble original dft (x(k)) to give y(k) c use recursion relation to give sin(tpn*i) multiplier c cosi = cos(tpn) sini = sin(tpn) cosd = cosi sind = sini nind = no4 + 1 do 20 i=2,nind ind = 2*i ind1 = no2 + 2 - i ak = (x(i)-x(ind1))/2. bk = -(x(i)+x(ind1)) y(ind) = ak y(ind-1) = bk*sini temp = cosi*cosd - sini*sind sini = cosi*sind + sini*cosd cosi = temp 20 continue y(1) = 0. y(2) = 0. c c take n/2 point idft of y c call fsst(y, no2) c c form x sequence from y sequence c x(2) = y(1)/2. x(1) = 0. if (n.eq.4) go to 40 do 30 i=2,no4 ind = 2*i ind1 = no2 + 2 - i x(ind-1) = (y(i)-y(ind1))/2. t1 = (y(i)+y(ind1))/2. x(ind) = t1 + x(ind-2) 30 continue 40 x(no2) = -y(no4+1)/2. return end