# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # SF_B1LEG -- Procedure to evaluate all the non-zero Legendrefunctions for # a single point and given order. procedure sf_b1leg (x, order, k1, k2, basis) real x # array of data points int order # order of polynomial, order = 1, constant real k1, k2 # normalizing constants real basis[ARB] # basis functions int i real ri, xnorm begin basis[1] = 1. if (order == 1) return xnorm = (x + k1) * k2 basis[2] = xnorm if (order == 2) return do i = 3, order { ri = i basis[i] = ((2. * ri - 3.) * xnorm * basis[i-1] - (ri - 2.) * basis[i-2]) / (ri - 1.) } end # SF_B1CHEB -- Procedure to evaluate all the non zero Chebyshev function # for a given x and order. procedure sf_b1cheb (x, order, k1, k2, basis) real x # number of data points int order # order of polynomial, 1 is a constant real k1, k2 # normalizing constants real basis[ARB] # array of basis functions int i real xnorm begin basis[1] = 1. if (order == 1) return xnorm = (x + k1) * k2 basis[2] = xnorm if (order == 2) return do i = 3, order basis[i] = 2. * xnorm * basis[i-1] - basis[i-2] end # SF_B1SPLINE1 -- Evaluate all the non-zero spline1 functions for a # single point. procedure sf_b1spline1 (x, npieces, k1, k2, basis, left) real x # set of data points int npieces # number of polynomial pieces minus 1 real k1, k2 # normalizing constants real basis[ARB] # basis functions int left # index of the appropriate spline functions real xnorm begin xnorm = (x + k1) * k2 left = min (int (xnorm), npieces) basis[2] = xnorm - left basis[1] = 1. - basis[2] end # SF_B1SPLINE3 -- Procedure to evaluate all the non-zero basis functions # for a cubic spline. procedure sf_b1spline3 (x, npieces, k1, k2, basis, left) real x # array of data points int npieces # number of polynomial pieces real k1, k2 # normalizing constants real basis[ARB] # array of basis functions int left # array of indices for first non-zero spline real sx, tx begin sx = (x + k1) * k2 left = min (int (sx), npieces) sx = sx - left tx = 1. - sx basis[1] = tx * tx * tx basis[2] = 1. + tx * (3. + tx * (3. - 3. * tx)) basis[3] = 1. + sx * (3. + sx * (3. - 3. * sx)) basis[4] = sx * sx * sx end