include # AST_VORBIT -- Radial velocity component of the Earth-Moon barycenter # relative to the Sun. procedure ast_vorbit (ra, dec, epoch, v) double ra # Right ascension of observation (hours) double dec # Declination of observation (degrees) double epoch # Julian epoch of observation double v # Component of orbital velocity (km/s) double t, manom, lperi, oblq, eccen, tanom, slong, r, d, l, b, vorb double ast_julday() begin # T is the number of Julian centuries since J1900. t = (ast_julday (epoch) - 2415020d0) / 36525. # MANOM is the mean anomaly of the Earth's orbit (degrees) # LPERI is the mean longitude of perihelion (degrees) # OBLQ is the mean obliquity of the ecliptic (degrees) # ECCEN is the eccentricity of the Earth's orbit (dimensionless) manom = 358.47583d0 + t * (35999.04975d0 - t * (0.000150d0 + t * 0.000003d0)) lperi = 101.22083d0 + t * (1.7191733d0 + t * (0.000453d0 + t * 0.000003d0)) oblq = 23.452294d0 - t * (0.0130125d0 + t * (0.00000164d0 - t * 0.000000503d0)) eccen = 0.01675104d0 - t * (0.00004180d0 + t * 0.000000126d0) # Convert to principle angles manom = mod (manom, 360.0D0) lperi = mod (lperi, 360.0D0) # Convert to radians r = DEGTORAD (ra * 15) d = DEGTORAD (dec) manom = DEGTORAD (manom) lperi = DEGTORAD (lperi) oblq = DEGTORAD (oblq) # TANOM is the true anomaly (approximate formula) (radians) tanom = manom + (2 * eccen - 0.25 * eccen**3) * sin (manom) + 1.25 * eccen**2 * sin (2 * manom) + 13./12. * eccen**3 * sin (3 * manom) # SLONG is the true longitude of the Sun seen from the Earth (radians) slong = lperi + tanom + PI # L and B are the longitude and latitude of the star in the orbital # plane of the Earth (radians) call ast_coord (double (0.), double (0.), double (-HALFPI), HALFPI - oblq, r, d, l, b) # VORB is the component of the Earth's orbital velocity perpendicular # to the radius vector (km/s) where the Earth's semi-major axis is # 149598500 km and the year is 365.2564 days. vorb = ((TWOPI / 365.2564d0) * 149598500.d0 / sqrt (1. - eccen**2)) / 86400.d0 # V is the projection onto the line of sight to the observation of # the velocity of the Earth-Moon barycenter with respect to the # Sun (km/s). v = vorb * cos (b) * (sin (slong - l) - eccen * sin (lperi - l)) end