include # AST_VROTATE -- Radial velocity component of the observer relative to # the center of the Earth due to the Earth's rotation. procedure ast_vrotate (ra, dec, epoch, latitude, longitude, altitude, v) double ra # Right Ascension of observation (hours) double dec # Declination of observation (degrees) double epoch # Epoch of observation (Julian epoch) double latitude # Latitude (degrees) double longitude # Latitude (degrees) double altitude # Altitude (meters) double v # Velocity (km / s) double lat, dlat, r, vc, lmst, ast_mst() begin # LAT is the latitude in radians. lat = DEGTORAD (latitude) # Reduction of geodetic latitude to geocentric latitude (radians). # Dlat is in arcseconds. dlat = -(11. * 60. + 32.743000d0) * sin (2 * lat) + 1.163300d0 * sin (4 * lat) -0.002600d0 * sin (6 * lat) lat = lat + DEGTORAD (dlat / 3600.) # R is the radius vector from the Earth's center to the observer # (meters). Vc is the corresponding circular velocity # (meters/sidereal day converted to km / sec). # (sidereal day = 23.934469591229 hours (1986)) r = 6378160.0d0 * (0.998327073d0 + 0.00167643800d0 * cos (2 * lat) - 0.00000351d0 * cos (4 * lat) + 0.000000008d0 * cos (6 * lat)) + altitude vc = TWOPI * (r / 1000.) / (23.934469591229d0 * 3600.) # Project the velocity onto the line of sight to the star. lmst = ast_mst (epoch, longitude) v = vc * cos (lat) * cos (DEGTORAD (dec)) * sin (DEGTORAD ((ra - lmst) * 15.)) end