# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include include include include include "display.h" include "gwindow.h" # DISPLAY - Display an image. The specified image section is mapped into # the specified section of an image display frame. The mapping involves # a linear transformation in X and Y and a linear or logarithmic transformation # in Z (greyscale). Images of all pixel datatypes are supported, and there # no upper limit on the size of an image. The display device is interfaced # to FIO as a file and is accessed herein via IMIO as just another imagefile. # The physical characteristics of the display (i.e., X, Y, and Z resolution) # are taken from the image header. The display frame buffer is the pixel # storage "file". # This is a version of the standard display that allows the overlay mask # to be manipuated in memory prior to displaying. procedure t_acedisplay() char image[SZ_FNAME] # Image to display int frame # Display frame int erase # Erase frame? int i pointer sp, wdes, im, ds, ovrly bool clgetb() int clgeti(), btoi() pointer immap(), imd_mapframe1(), overlay() errchk immap, imd_mapframe1 errchk ds_getparams, ds_setwcs, ds_load_display, ds_erase_border begin call smark (sp) call salloc (wdes, LEN_WDES, TY_STRUCT) call aclri (Memi[wdes], LEN_WDES) # Open input imagefile. call clgstr ("image", image, SZ_FNAME) im = immap (image, READ_ONLY, 0) if (IM_NDIM(im) <= 0) call error (1, "image has no pixels") # Open display device as an image. frame = clgeti ("frame") erase = btoi (clgetb ("erase")) if (erase == YES) ds = imd_mapframe1 (frame, WRITE_ONLY, btoi (clgetb ("select_frame")), erase) else ds = imd_mapframe1 (frame, READ_WRITE, btoi (clgetb ("select_frame")), erase) # Get display parameters and set up transformation. call ds_getparams (im, ds, wdes) # Compute and output the screen to image pixel WCS. call ds_setwcs (im, ds, wdes, image, frame) # Setup the overlay. ovrly = overlay (W_OVRLY(wdes), im) # Display the image and zero the border if necessary. call ods_load_display (im, ds, wdes, ovrly) if (!clgetb ("erase") && clgetb ("border_erase")) call ds_erase_border (im, ds, wdes) # Free storage. call maskcolor_free (W_OCOLORS(wdes)) call maskcolor_free (W_BPCOLORS(wdes)) do i = 0, W_MAXWC if (W_UPTR(W_WC(wdes,i)) != NULL) call ds_ulutfree (W_UPTR(W_WC(wdes,i))) if (ovrly != NULL) call imunmap (ovrly) call imunmap (ds) call imunmap (im) call sfree (sp) end # DS_LOAD_DISPLAY -- Map an image into the display window. In general this # involves independent linear transformations in the X, Y, and Z (greyscale) # dimensions. If a spatial dimension is larger than the display window then # the image is block averaged. If a spatial dimension or a block averaged # dimension is smaller than the display window then linear interpolation is # used to expand the image. Both the input image and the output device appear # to us as images, accessed via IMIO. All spatial scaling is # handled by the "scaled input" package, i.e., SIGM2[SR]. Our task is to # get lines from the scaled input image, transform the greyscale if necessary, # and write the lines to the output device. # This version passes the overlay mask pointer rather than mapping it. # Otherwise this is unchanged from the standard version. procedure ods_load_display (im, ds, wdes, ovrly) pointer im # input image pointer ds # output image pointer wdes # graphics window descriptor pointer ovrly # overlay pointer real z1, z2, dz1, dz2, px1, px2, py1, py2 int i, order, zt, wx1, wx2, wy1, wy2, wy, nx, ny, xblk, yblk pointer wdwin, wipix, wdpix, bpm, pm, uptr pointer in, out, si, si_ovrly, si_bpovrly, ocolors, bpcolors, rtemp bool unitary_greyscale_transformation short lut1, lut2, dz1_s, dz2_s, z1_s, z2_s bool fp_equalr() int imstati() real if_elogr() pointer ds_pmmap(), imps2s(), imps2r(), sigm2s(), sigm2r(), sigm2_setup() errchk ds_pmmap, imps2s, imps2r, sigm2s, sigm2r, sigm2_setup extern if_elogr begin wdwin = W_WC(wdes,W_DWIN) wipix = W_WC(wdes,W_IPIX) wdpix = W_WC(wdes,W_DPIX) # Set image and display pixels. px1 = nint (W_XS(wipix)) px2 = nint (W_XE(wipix)) py1 = nint (W_YS(wipix)) py2 = nint (W_YE(wipix)) wx1 = nint (W_XS(wdpix)) wx2 = nint (W_XE(wdpix)) wy1 = nint (W_YS(wdpix)) wy2 = nint (W_YE(wdpix)) z1 = W_ZS(wdwin) z2 = W_ZE(wdwin) zt = W_ZT(wdwin) uptr = W_UPTR(wdwin) order = max (W_XT(wdwin), W_YT(wdwin)) # Setup scaled input and masks. si = NULL si_ovrly = NULL si_bpovrly = NULL nx = wx2 - wx1 + 1 ny = wy2 - wy1 + 1 xblk = INDEFI yblk = INDEFI ocolors = W_OCOLORS(wdes) # iferr (ovrly = ds_pmmap (W_OVRLY(wdes), im)) { # call erract (EA_WARN) # ovrly = NULL # } if (ovrly != NULL) { xblk = INDEFI yblk = INDEFI si_ovrly = sigm2_setup (ovrly, NULL, px1,px2,nx,xblk, py1,py2,ny,yblk, -1) } bpcolors = W_BPCOLORS(wdes) switch (W_BPDISP(wdes)) { case BPDNONE: si = sigm2_setup (im, NULL, px1,px2,nx,xblk, py1,py2,ny,yblk, order) case BPDOVRLY: si = sigm2_setup (im, NULL, px1,px2,nx,xblk, py1,py2,ny,yblk, order) iferr (bpm = ds_pmmap (W_BPM(wdes), im)) bpm = NULL if (bpm != NULL) si_bpovrly = sigm2_setup (bpm, NULL, px1,px2,nx,xblk, py1,py2,ny,yblk, -1) case BPDINTERP: iferr (bpm = ds_pmmap (W_BPM(wdes), im)) bpm = NULL if (bpm != NULL) pm = imstati (bpm, IM_PMDES) else pm = NULL si = sigm2_setup (im, pm, px1,px2,nx,xblk, py1,py2,ny,yblk, order) } # The device IM_MIN and IM_MAX parameters define the acceptable range # of greyscale values for the output device (e.g., 0-255 for most 8-bit # display devices). Values Z1 and Z2 are mapped linearly or # logarithmically into IM_MIN and IM_MAX. dz1 = IM_MIN(ds) dz2 = IM_MAX(ds) if (fp_equalr (z1, z2)) { z1 = z1 - 1 z2 = z2 + 1 } # If the user specifies the transfer function, verify that the # intensity and greyscale are in range. if (zt == W_USER) { call alims (Mems[uptr], U_MAXPTS, lut1, lut2) dz1_s = short (dz1) dz2_s = short (dz2) if (lut2 < dz1_s || lut1 > dz2_s) call eprintf ("User specified greyscales out of range\n") if (z2 < IM_MIN(im) || z1 > IM_MAX(im)) call eprintf ("User specified intensities out of range\n") } # Type short pixels are treated as a special case to minimize vector # operations for such images (which are common). If the image pixels # are either short or real then only the ALTR (greyscale transformation) # vector operation is required. The ALTR operator linearly maps # greylevels in the range Z1:Z2 to DZ1:DZ2, and does a floor ceiling # of DZ1:DZ2 on all pixels outside the range. If unity mapping is # employed the data is simply copied, i.e., floor ceiling constraints # are not applied. This is very fast and will produce a contoured # image on the display which will be adequate for some applications. if (zt == W_UNITARY) { unitary_greyscale_transformation = true } else if (zt == W_LINEAR) { unitary_greyscale_transformation = (fp_equalr(z1,dz1) && fp_equalr(z2,dz2)) } else unitary_greyscale_transformation = false if (IM_PIXTYPE(im) == TY_SHORT && zt != W_LOG) { z1_s = z1; z2_s = z2 if (z1_s == z2_s) { z1_s = z1_s - 1 z2_s = z2_s + 1 } for (wy=wy1; wy <= wy2; wy=wy+1) { in = sigm2s (si, wy - wy1 + 1) out = imps2s (ds, wx1, wx2, wy, wy) if (unitary_greyscale_transformation) { call amovs (Mems[in], Mems[out], nx) } else if (zt == W_USER) { dz1_s = U_Z1; dz2_s = U_Z2 call amaps (Mems[in],Mems[out],nx, z1_s,z2_s, dz1_s,dz2_s) call aluts (Mems[out], Mems[out], nx, Mems[uptr]) } else { dz1_s = dz1; dz2_s = dz2 call amaps (Mems[in],Mems[out],nx, z1_s,z2_s, dz1_s,dz2_s) } if (si_ovrly != NULL) { in = sigm2s (si_ovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolors (ocolors, int(Mems[in+i]), Mems[out+i]) } } if (si_bpovrly != NULL) { in = sigm2s (si_bpovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolors (bpcolors, int(Mems[in+i]), Mems[out+i]) } } } } else if (zt == W_USER) { call salloc (rtemp, nx, TY_REAL) for (wy=wy1; wy <= wy2; wy=wy+1) { in = sigm2r (si, wy - wy1 + 1) out = imps2s (ds, wx1, wx2, wy, wy) call amapr (Memr[in], Memr[rtemp], nx, z1, z2, real(U_Z1), real(U_Z2)) call achtrs (Memr[rtemp], Mems[out], nx) call aluts (Mems[out], Mems[out], nx, Mems[uptr]) if (si_ovrly != NULL) { in = sigm2s (si_ovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolors (ocolors, int(Mems[in+i]), Mems[out+i]) } } if (si_bpovrly != NULL) { in = sigm2s (si_bpovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolors (bpcolors, int(Mems[in+i]), Mems[out+i]) } } } } else { for (wy=wy1; wy <= wy2; wy=wy+1) { in = sigm2r (si, wy - wy1 + 1) out = imps2r (ds, wx1, wx2, wy, wy) if (unitary_greyscale_transformation) { call amovr (Memr[in], Memr[out], nx) } else if (zt == W_LOG) { call amapr (Memr[in], Memr[out], nx, z1, z2, 1.0, 10.0 ** MAXLOG) call alogr (Memr[out], Memr[out], nx, if_elogr) call amapr (Memr[out], Memr[out], nx, 0.0, real(MAXLOG), dz1, dz2) } else call amapr (Memr[in], Memr[out], nx, z1, z2, dz1, dz2) if (si_ovrly != NULL) { in = sigm2s (si_ovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolorr (ocolors, int(Mems[in+i]), Memr[out+i]) } } if (si_bpovrly != NULL) { in = sigm2s (si_bpovrly, wy - wy1 + 1) do i = 0, nx-1 { if (Mems[in+i] != 0) call mcolorr (bpcolors, int(Mems[in+i]), Memr[out+i]) } } } } call sigm2_free (si) if (si_ovrly != NULL) call sigm2_free (si_ovrly) if (si_bpovrly != NULL) call sigm2_free (si_bpovrly) # if (ovrly != NULL) # call imunmap (ovrly) if (bpm != NULL) call imunmap (bpm) end # The ds_pmmap routines needed to be modified for 27 bit masks. include include include include include include include # DS_PMMAP -- Open a pixel mask READ_ONLY. # # Open the pixel mask. If a regular image is specified convert it to # a pixel mask. Match the mask to the reference image based on the # physical coordinates. A null filename is allowed and returns NULL. pointer procedure ods_pmmap (pmname, refim) char pmname[ARB] #I Pixel mask name pointer refim #I Reference image pointer pointer im char fname[SZ_FNAME] int nowhite(), errcode() bool streq() pointer im_pmmap(), ods_immap() errchk ods_immap, ods_match begin if (nowhite (pmname, fname, SZ_FNAME) == 0) return (NULL) if (streq (fname, "EMPTY")) return (NULL) if (streq (fname, "BPM")) { iferr (call imgstr (refim, "BPM", fname, SZ_FNAME)) return (NULL) } iferr (im = im_pmmap (fname, READ_ONLY, NULL)) { switch (errcode()) { case SYS_FOPNNEXFIL, SYS_PLBADSAVEF: im = ods_immap (fname, refim) default: call erract (EA_ERROR) } } iferr (call ods_match (im, refim)) call erract (EA_WARN) return (im) end # DS_PMIMMAP -- Open a pixel mask from a non-pixel list image. # Return error if the image cannot be opened. pointer procedure ods_immap (pmname, refim) char pmname[ARB] #I Image name pointer refim #I Reference image pointer short val int i, ndim, npix pointer sp, v1, v2, im_in, im_out, pm, mw, data int imgnli() pointer immap(), pm_newmask(), im_pmmapo(), imgl1i(), mw_openim() errchk immap, mw_openim begin call smark (sp) call salloc (v1, IM_MAXDIM, TY_LONG) call salloc (v2, IM_MAXDIM, TY_LONG) call amovkl (long(1), Meml[v1], IM_MAXDIM) call amovkl (long(1), Meml[v2], IM_MAXDIM) im_in = immap (pmname, READ_ONLY, 0) pm = pm_newmask (im_in, 16) ndim = IM_NDIM(im_in) npix = IM_LEN(im_in,1) while (imgnli (im_in, data, Meml[v1]) != EOF) { do i = 0, npix-1 { val = Memi[data+i] if (val < 0) Memi[data+i] = 0 } call pmplpi (pm, Meml[v2], Memi[data], 0, npix, PIX_SRC) call amovl (Meml[v1], Meml[v2], ndim) } im_out = im_pmmapo (pm, im_in) data = imgl1i (im_out) # Force I/O to set header mw = mw_openim (im_in) # Set WCS call mw_saveim (mw, im_out) call mw_close (mw) call imunmap (im_in) call sfree (sp) return (im_out) end # DS_MATCH -- Set the pixel mask to match the reference image. # This matches sizes and physical coordinates and allows the # original mask to be smaller or larger than the reference image. # Subsequent use of the pixel mask can then work in the logical # coordinates of the reference image. A null input returns a null output. procedure ods_match (im, refim) pointer im #U Pixel mask image pointer pointer refim #I Reference image pointer int i, j, k, nc, nl, ncpm, nlpm, c1, c2, l1, l2, nref, npm int steptype, xoffset, xstep, yoffset, ystep double x1, x2, y1, y2 long vold[IM_MAXDIM], vnew[IM_MAXDIM] pointer mwref, mwpm, ctref, ctpm, pm, pmnew, imnew, bufref, bufpm int imstati() pointer pm_open(), mw_openim(), im_pmmapo(), imgl1i(), mw_sctran() bool pm_empty(), pm_linenotempty() errchk pm_open, mw_openim begin if (im == NULL) return # Set sizes. pm = imstati (im, IM_PMDES) nc = IM_LEN(refim,1) nl = IM_LEN(refim,2) ncpm = IM_LEN(im,1) nlpm = IM_LEN(im,2) # Check if the two are the same logical size and the mask is empty. if (nc == ncpm && nl == nlpm && pm_empty (pm)) return # Check coordinate transformations. mwref = mw_openim (refim) mwpm = mw_openim (im) steptype = 1 ctref = mw_sctran (mwref, "logical", "physical", 3) ctpm = mw_sctran (mwpm, "physical", "logical", 3) call mw_c2trand (ctref, 1D0, 1D0, x1, y1) call mw_c2trand (ctpm, x1, y1, x1, y1) call mw_c2trand (ctref, 2D0, 1D0, x2, y2) call mw_c2trand (ctpm, x2, y2, x2, y2) if (abs(x2-x1) < 1.) { steptype = 2 call mw_ctfree (ctref) call mw_ctfree (ctpm) ctref = mw_sctran (mwref, "physical", "logical", 3) ctpm = mw_sctran (mwpm, "logical", "physical", 3) call mw_c2trand (ctpm, 1D0, 1D0, x1, y1) call mw_c2trand (ctref, x1, y1, x1, y1) call mw_c2trand (ctpm, 2D0, 1D0, x2, y2) call mw_c2trand (ctref, x2, y2, x2, y2) } x2 = x2 - x1 if (abs(y1-y2) > 10*EPSILONR) call error (0, "Image and mask have a relative rotation") if (abs(x1-nint(x1)) > 10*EPSILONR && abs(x1-nint(x1))-0.5 > 10*EPSILONR) call error (0, "Image and mask have non-integer relative offsets") if (abs(x2-nint(x2)) > 10*EPSILONR) call error (0, "Image and mask have non-integer relative steps") xoffset = nint (x1 - 1D0) xstep = nint (x2) if (steptype == 1) { call mw_c2trand (ctref, 1D0, 1D0, x1, y1) call mw_c2trand (ctpm, x1, y1, x1, y1) call mw_c2trand (ctref, 1D0, 2D0, x2, y2) call mw_c2trand (ctpm, x2, y2, x2, y2) } else { call mw_c2trand (ctpm, 1D0, 1D0, x1, y1) call mw_c2trand (ctref, x1, y1, x1, y1) call mw_c2trand (ctpm, 1D0, 2D0, x2, y2) call mw_c2trand (ctref, x2, y2, x2, y2) } y2 = y2 - y1 if (abs(x1-x2) > 10*EPSILONR) call error (0, "Image and mask have a relative rotation") if (abs(y1-nint(y1)) > 10*EPSILONR && abs(y1-nint(y1))-0.5 > 10*EPSILONR) call error (0, "Image and mask have non-integer relative offsets") if (abs(y2-nint(y2)) > 10*EPSILONR) call error (0, "Image and mask have non-integer relative steps") yoffset = nint (y1 - 1D0) ystep = nint (y2) call mw_ctfree (ctref) call mw_ctfree (ctpm) call mw_close (mwref) call mw_close (mwpm) # Check if the two have the same coordinate system. if (nc==ncpm && nl==nlpm && xoffset==0 && yoffset==0 && xstep==ystep) return # Create a new pixel mask of the required size and offset. pmnew = pm_open (NULL) call pm_ssize (pmnew, 2, IM_LEN(refim,1), 27) imnew = im_pmmapo (pmnew, NULL) bufref = imgl1i (imnew) if (steptype == 1) { c1 = 1 + xoffset + max (0, (xstep - 1 - xoffset) / xstep) * xstep c2 = 1 + xoffset + min (nc-1, (ncpm - 1 - xoffset) / xstep) * xstep l1 = 1 + yoffset + max (0, (ystep - 1 - yoffset) / ystep) * ystep l2 = 1 + yoffset + min (nl-1, (nlpm - 1 - yoffset) / ystep) * ystep npm = c2 - c1 + 1 nref = npm / xstep if (nref > 0) { call malloc (bufpm, npm, TY_INT) call malloc (bufref, nref, TY_INT) call amovkl (long(1), vold, IM_MAXDIM) call amovkl (long(1), vnew, IM_MAXDIM) vold[1] = c1 vnew[1] = c1 - xoffset do i = l1, l2, ystep { vold[2] = i if (!pm_linenotempty (pm, vold)) next call pmglpi (pm, vold, Memi[bufpm], 0, npm, 0) vnew[2] = l1 - yoffset + (i - l1) / ystep j = 0 do k = 0, npm-1, xstep { Memi[bufref+j] = Memi[bufpm+k] j = j + 1 } call pmplpi (pmnew, vnew, Memi[bufref], 0, nref, PIX_SRC) } } } else { c1 = max (1, 1 - xoffset) c2 = min (ncpm, nc / xstep - xoffset) l1 = max (1, 1 - yoffset) l2 = min (nlpm, nl / ystep - yoffset) npm = c2 - c1 + 1 nref = npm * xstep if (nref > 0) { call malloc (bufpm, npm, TY_INT) call malloc (bufref, nref, TY_INT) call amovkl (long(1), vold, IM_MAXDIM) call amovkl (long(1), vnew, IM_MAXDIM) vold[1] = c1 vnew[1] = c1 + xoffset do i = l1, l2 { vold[2] = i if (!pm_linenotempty (pm, vold)) next call pmglpi (pm, vold, Memi[bufpm], 0, npm, 0) call aclri (Memi[bufref], nref) do j = 0, npm-1 { k = j * xstep Memi[bufref+k] = Memi[bufpm+j] } vnew[2] = l1 + yoffset + (i - l1) * ystep call pmplpi (pmnew, vnew, Memi[bufref], 0, nref, PIX_SRC) } } call mfree (bufpm, TY_INT) call mfree (bufref, TY_INT) } # Update the IMIO descriptor. call imunmap (im) im = imnew call imseti (im, IM_PMDES, pmnew) end # IF_ELOG -- The error function for log10. Note that MAX_EXPONENT is # currently an integer so it is converted to the appropriate data type # before being returned. real procedure if_elogr (x) real x # the input pixel value begin return (real(-MAX_EXPONENT)) end