# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include include include define NYOUT 16 # number of lines output at once define NMARGIN 3 # number of boundary pixels required define NMARGIN_SPLINE3 16 # number of spline boundary pixels required # T_IMSHIFT -- Shift a 2-D image by an arbitrary amount in X and Y, using # boundary extension to preserve the image size. procedure t_imshift() pointer imtlist1 # Input image list pointer imtlist2 # Output image list pointer image1 # Input image pointer image2 # Output image pointer imtemp # Temporary file pointer sfile # Text file containing list of shifts pointer interpstr # Interpolant string int list1, list2, boundary_type, ixshift, iyshift, nshifts, interp_type pointer sp, str, xs, ys, im1, im2, sf, mw real constant, shifts[2] double txshift, tyshift, xshift, yshift bool fp_equald(), envgetb() int imtgetim(), imtlen(), clgwrd(), strdic(), open(), ish_rshifts() pointer immap(), imtopen(), mw_openim() real clgetr() double clgetd() errchk ish_ishiftxy, ish_gshiftxy, mw_openim, mw_saveim, mw_shift begin call smark (sp) call salloc (imtlist1, SZ_LINE, TY_CHAR) call salloc (imtlist2, SZ_LINE, TY_CHAR) call salloc (image1, SZ_LINE, TY_CHAR) call salloc (image2, SZ_LINE, TY_CHAR) call salloc (imtemp, SZ_LINE, TY_CHAR) call salloc (sfile, SZ_FNAME, TY_CHAR) call salloc (interpstr, SZ_FNAME, TY_CHAR) call salloc (str, SZ_LINE, TY_CHAR) # Get task parameters. call clgstr ("input", Memc[imtlist1], SZ_FNAME) call clgstr ("output", Memc[imtlist2], SZ_FNAME) call clgstr ("shifts_file", Memc[sfile], SZ_FNAME) # Get the 2-D interpolation parameters. call clgstr ("interp_type", Memc[interpstr], SZ_FNAME) interp_type = strdic (Memc[interpstr], Memc[str], SZ_LINE, II_BFUNCTIONS) boundary_type = clgwrd ("boundary_type", Memc[str], SZ_LINE, ",constant,nearest,reflect,wrap,") if (boundary_type == BT_CONSTANT) constant = clgetr ("constant") # Open the input and output image lists. list1 = imtopen (Memc[imtlist1]) list2 = imtopen (Memc[imtlist2]) if (imtlen (list1) != imtlen (list2)) { call imtclose (list1) call imtclose (list2) call error (1, "Number of input and output images not the same.") } # Determine the source of the shifts. if (Memc[sfile] != EOS) { sf = open (Memc[sfile], READ_ONLY, TEXT_FILE) call salloc (xs, imtlen (list1), TY_DOUBLE) call salloc (ys, imtlen (list1), TY_DOUBLE) nshifts = ish_rshifts (sf, Memd[xs], Memd[ys], imtlen (list1)) if (nshifts != imtlen (list1)) call error (2, "The number of input images and shifts are not the same.") } else { sf = NULL txshift = clgetd ("xshift") tyshift = clgetd ("yshift") } # Do each set of input and output images. nshifts = 0 while ((imtgetim (list1, Memc[image1], SZ_FNAME) != EOF) && (imtgetim (list2, Memc[image2], SZ_FNAME) != EOF)) { call xt_mkimtemp (Memc[image1], Memc[image2], Memc[imtemp], SZ_FNAME) im1 = immap (Memc[image1], READ_ONLY, 0) im2 = immap (Memc[image2], NEW_COPY, im1) if (sf != NULL) { xshift = Memd[xs+nshifts] yshift = Memd[ys+nshifts] } else { xshift = txshift yshift = tyshift } ixshift = int (xshift) iyshift = int (yshift) iferr { # Perform the shift. if (interp_type == II_BINEAREST) { call ish_ishiftxy (im1, im2, nint(xshift), nint(yshift), boundary_type, constant) } else if (fp_equald (xshift, double(ixshift)) && fp_equald (yshift, double(iyshift))) { call ish_ishiftxy (im1, im2, ixshift, iyshift, boundary_type, constant) } else { call ish_gshiftxy (im1, im2, xshift, yshift, Memc[interpstr], boundary_type, constant) } # Update the image WCS to reflect the shift. if (!envgetb ("nomwcs")) { mw = mw_openim (im1) shifts[1] = xshift shifts[2] = yshift call mw_shift (mw, shifts, 03B) call mw_saveim (mw, im2) call mw_close (mw) } } then { call eprintf ("Error shifting image: %s\n") call pargstr (Memc[image1]) call erract (EA_WARN) call imunmap (im2) call imunmap (im1) call imdelete (Memc[image2]) } else { # Finish up. call imunmap (im2) call imunmap (im1) call xt_delimtemp (Memc[image2], Memc[imtemp]) } nshifts = nshifts + 1 } if (sf != NULL) call close (sf) call imtclose (list1) call imtclose (list2) call sfree (sp) end # ISH_ISHIFTXY -- Shift a 2-D image by integral pixels in x and y. procedure ish_ishiftxy (im1, im2, ixshift, iyshift, boundary_type, constant) pointer im1 #I pointer to the input image pointer im2 #I pointer to the output image int ixshift #I shift in x and y int iyshift #I int boundary_type #I type of boundary extension real constant #I constant for boundary extension pointer buf1, buf2 long v[IM_MAXDIM] int ncols, nlines, nbpix int i, x1col, x2col, yline int impnls(), impnli(), impnll(), impnlr(), impnld(), impnlx() pointer imgs2s(), imgs2i(), imgs2l(), imgs2r(), imgs2d(), imgs2x() errchk impnls, impnli, impnll, impnlr, impnld, impnlx errchk imgs2s, imgs2i, imgs2l, imgs2r, imgs2d, imgs2x string wrerr "ISHIFTXY: Error writing in image." begin ncols = IM_LEN(im1,1) nlines = IM_LEN(im1,2) # Cannot shift off image. if (ixshift < -ncols || ixshift > ncols) call error (3, "ISHIFTXY: X shift out of bounds.") if (iyshift < -nlines || iyshift > nlines) call error (4, "ISHIFTXY: Y shift out of bounds.") # Calculate the shift. switch (boundary_type) { case BT_CONSTANT,BT_REFLECT,BT_NEAREST: ixshift = min (ncols, max (-ncols, ixshift)) iyshift = min (nlines, max (-nlines, iyshift)) case BT_WRAP: ixshift = mod (ixshift, ncols) iyshift = mod (iyshift, nlines) } # Set the boundary extension values. nbpix = max (abs (ixshift), abs (iyshift)) call imseti (im1, IM_NBNDRYPIX, nbpix) call imseti (im1, IM_TYBNDRY, boundary_type) if (boundary_type == BT_CONSTANT) call imsetr (im1, IM_BNDRYPIXVAL, constant) # Get column boundaries in the input image. x1col = max (-ncols + 1, - ixshift + 1) x2col = min (2 * ncols, ncols - ixshift) call amovkl (long (1), v, IM_MAXDIM) # Shift the image using the appropriate data type operators. switch (IM_PIXTYPE(im1)) { case TY_SHORT: do i = 1, nlines { if (impnls (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2s (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovs (Mems[buf1], Mems[buf2], ncols) } case TY_INT: do i = 1, nlines { if (impnli (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2i (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovi (Memi[buf1], Memi[buf2], ncols) } case TY_USHORT, TY_LONG: do i = 1, nlines { if (impnll (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2l (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovl (Meml[buf1], Meml[buf2], ncols) } case TY_REAL: do i = 1, nlines { if (impnlr (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2r (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovr (Memr[buf1], Memr[buf2], ncols) } case TY_DOUBLE: do i = 1, nlines { if (impnld (im2, buf2, v) == EOF) call error (0, wrerr) yline = i - iyshift buf1 = imgs2d (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (0, wrerr) call amovd (Memd[buf1], Memd[buf2], ncols) } case TY_COMPLEX: do i = 1, nlines { if (impnlx (im2, buf2, v) == EOF) call error (0, wrerr) yline = i - iyshift buf1 = imgs2x (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (0, wrerr) call amovx (Memx[buf1], Memx[buf2], ncols) } default: call error (6, "ISHIFTXY: Unknown IRAF type.") } end # ISH_GSHIFTXY -- Shift an image by fractional pixels in x and y. # Unfortunately, this code currently performs the shift only on single # precision real, so precision is lost if the data is of type double, # and the imaginary component is lost if the data is of type complex. procedure ish_gshiftxy (im1, im2, xshift, yshift, interpstr, boundary_type, constant) pointer im1 #I pointer to input image pointer im2 #I pointer to output image double xshift #I shift in x direction double yshift #I shift in y direction char interpstr[ARB] #I type of interpolant int boundary_type #I type of boundary extension real constant #I value of constant for boundary extension int lout1, lout2, nyout, nxymargin, interp_type, nsinc, nincr int cin1, cin2, nxin, lin1, lin2, nyin, i int ncols, nlines, nbpix, fstline, lstline double xshft, yshft, deltax, deltay, dx, dy, cx, ly pointer sp, x, y, msi, sinbuf, soutbuf pointer imps2r() int msigeti() bool fp_equald() errchk msisinit(), msifree(), msifit(), msigrid() errchk imgs2r(), imps2r() begin ncols = IM_LEN(im1,1) nlines = IM_LEN(im1,2) # Check for out of bounds shift. if (xshift < -ncols || xshift > ncols) call error (7, "GSHIFTXY: X shift out of bounds.") if (yshift < -nlines || yshift > nlines) call error (8, "GSHIFTXY: Y shift out of bounds.") # Get the real shift. if (boundary_type == BT_WRAP) { xshft = mod (xshift, real (ncols)) yshft = mod (yshift, real (nlines)) } else { xshft = xshift yshft = yshift } # Allocate temporary space. call smark (sp) call salloc (x, 2 * ncols, TY_REAL) call salloc (y, 2 * nlines, TY_REAL) sinbuf = NULL # Define the x and y shifts for the interpolation. dx = abs (xshft - int (xshft)) if (fp_equald (dx, 0D0)) deltax = 0.0 else if (xshft > 0.) deltax = 1. - dx else deltax = dx dy = abs (yshft - int (yshft)) if (fp_equald (dy, 0D0)) deltay = 0.0 else if (yshft > 0.) deltay = 1. - dy else deltay = dy # Initialize the 2-D interpolation routines. call msitype (interpstr, interp_type, nsinc, nincr, cx) if (interp_type == II_BILSINC || interp_type == II_BISINC ) call msisinit (msi, II_BILSINC, nsinc, 1, 1, deltax - nint (deltax), deltay - nint (deltay), 0.0) else call msisinit (msi, interp_type, nsinc, nincr, nincr, cx, cx, 0.0) # Set boundary extension parameters. if (interp_type == II_BISPLINE3) nxymargin = NMARGIN_SPLINE3 else if (interp_type == II_BISINC || interp_type == II_BILSINC) nxymargin = msigeti (msi, II_MSINSINC) else nxymargin = NMARGIN nbpix = max (int (abs(xshft)+1.0), int (abs(yshft)+1.0)) + nxymargin call imseti (im1, IM_NBNDRYPIX, nbpix) call imseti (im1, IM_TYBNDRY, boundary_type) if (boundary_type == BT_CONSTANT) call imsetr (im1, IM_BNDRYPIXVAL, constant) # Define the x interpolation coordinates deltax = deltax + nxymargin if (interp_type == II_BIDRIZZLE) { do i = 1, ncols { Memr[x+2*i-2] = i + deltax - 0.5 Memr[x+2*i-1] = i + deltax + 0.5 } } else { do i = 1, ncols Memr[x+i-1] = i + deltax } # Define the y interpolation coordinates. deltay = deltay + nxymargin if (interp_type == II_BIDRIZZLE) { do i = 1, NYOUT { Memr[y+2*i-2] = i + deltay - 0.5 Memr[y+2*i-1] = i + deltay + 0.5 } } else { do i = 1, NYOUT Memr[y+i-1] = i + deltay } # Define column ranges in the input image. cx = 1. - nxymargin - xshft if ((cx <= 0.) && (! fp_equald (dx, 0D0))) cin1 = int (cx) - 1 else cin1 = int (cx) cin2 = ncols - xshft + nxymargin + 1 nxin = cin2 - cin1 + 1 # Loop over output sections. for (lout1 = 1; lout1 <= nlines; lout1 = lout1 + NYOUT) { # Define range of output lines. lout2 = min (lout1 + NYOUT - 1, nlines) nyout = lout2 - lout1 + 1 # Define correspoding range of input lines. ly = lout1 - nxymargin - yshft if ((ly <= 0.0) && (! fp_equald (dy, 0D0))) lin1 = int (ly) - 1 else lin1 = int (ly) lin2 = lout2 - yshft + nxymargin + 1 nyin = lin2 - lin1 + 1 # Get appropriate input section and calculate the coefficients. if ((sinbuf == NULL) || (lin1 < fstline) || (lin2 > lstline)) { fstline = lin1 lstline = lin2 call ish_buf (im1, cin1, cin2, lin1, lin2, sinbuf) call msifit (msi, Memr[sinbuf], nxin, nyin, nxin) } # Output the section. soutbuf = imps2r (im2, 1, ncols, lout1, lout2) if (soutbuf == EOF) call error (9, "GSHIFTXY: Error writing output image.") # Evaluate the interpolant. call msigrid (msi, Memr[x], Memr[y], Memr[soutbuf], ncols, nyout, ncols) } if (sinbuf != NULL) call mfree (sinbuf, TY_REAL) call msifree (msi) call sfree (sp) end # ISH_BUF -- Provide a buffer of image lines with minimum reads. procedure ish_buf (im, col1, col2, line1, line2, buf) pointer im #I pointer to input image int col1, col2 #I column range of input buffer int line1, line2 #I line range of input buffer pointer buf #U buffer pointer buf1, buf2 int i, ncols, nlines, nclast, llast1, llast2, nllast errchk malloc, realloc pointer imgs2r() begin ncols = col2 - col1 + 1 nlines = line2 - line1 + 1 # Make sure the buffer is large enough. if (buf == NULL) { call malloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } else if ((nlines != nllast) || (ncols != nclast)) { call realloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } # The buffers must be contiguous. if (line1 < llast1) { do i = line2, line1, -1 { if (i > llast1) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } else if (line2 > llast2) { do i = line1, line2 { if (i < llast2) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } llast1 = line1 llast2 = line2 nclast = ncols nllast = nlines end # ISH_RSHIFTS -- Read shifts from a file. int procedure ish_rshifts (fd, x, y, max_nshifts) int fd #I shifts file double x[ARB] #O x array double y[ARB] #O y array int max_nshifts #I the maximum number of shifts int nshifts int fscan(), nscan() begin nshifts = 0 while (fscan (fd) != EOF && nshifts < max_nshifts) { call gargd (x[nshifts+1]) call gargd (y[nshifts+1]) if (nscan () != 2) next nshifts = nshifts + 1 } return (nshifts) end