include include include define NYOUT 16 # number of lines output at once define NMARGIN 3 # number of boundary pixels required define NMARGIN_SPLINE3 16 # number of spline boundary pixels required # RG_XSHIFTIM - Shift a 1 or 2D image by a fractional pixel amount # x and y procedure rg_xshiftim (im1, im2, xshift, yshift, interpstr, boundary_type, constant) pointer im1 #I pointer to input image pointer im2 #I pointer to output image real xshift #I shift in x direction real yshift #I shift in y direction char interpstr[ARB] #I type of interpolant int boundary_type #I type of boundary extension real constant #I value of constant for boundary extension int interp_type pointer sp, str bool fp_equalr() int strdic() begin call smark (sp) call salloc (str, SZ_FNAME, TY_CHAR) interp_type = strdic (interpstr, Memc[str], SZ_FNAME, II_BFUNCTIONS) if (interp_type == II_NEAREST) call rg_xishiftim (im1, im2, nint (xshift), nint (yshift), interp_type, boundary_type, constant) else if (fp_equalr (xshift, real (int (xshift))) && fp_equalr (yshift, real (int (xshift)))) call rg_xishiftim (im1, im2, int (xshift), int (yshift), interp_type, boundary_type, constant) else call rg_xfshiftim (im1, im2, xshift, yshift, interpstr, boundary_type, constant) call sfree (sp) end # RG_XISHIFTIM -- Shift a 2-D image by integral pixels in x and y. procedure rg_xishiftim (im1, im2, nxshift, nyshift, interp_type, boundary_type, constant) pointer im1 #I pointer to the input image pointer im2 #I pointer to the output image int nxshift, nyshift #I shift in x and y int interp_type #I type of interpolant int boundary_type #I type of boundary extension real constant #I constant for boundary extension int ixshift, iyshift pointer buf1, buf2 long v[IM_MAXDIM] int ncols, nlines, nbpix int i, x1col, x2col, yline int impnls(), impnli(), impnll(), impnlr(), impnld(), impnlx() pointer imgs2s(), imgs2i(), imgs2l(), imgs2r(), imgs2d(), imgs2x() errchk impnls, impnli, impnll, impnlr, impnld, impnlx errchk imgs2s, imgs2i, imgs2l, imgs2r, imgs2d, imgs2x string wrerr "ISHIFTXY: Error writing in image." begin ixshift = nxshift iyshift = nyshift ncols = IM_LEN(im1,1) nlines = IM_LEN(im1,2) # Cannot shift off image. if (ixshift < -ncols || ixshift > ncols) call error (3, "ISHIFTXY: X shift out of bounds.") if (iyshift < -nlines || iyshift > nlines) call error (4, "ISHIFTXY: Y shift out of bounds.") # Calculate the shift. switch (boundary_type) { case BT_CONSTANT,BT_REFLECT,BT_NEAREST: ixshift = min (ncols, max (-ncols, ixshift)) iyshift = min (nlines, max (-nlines, iyshift)) case BT_WRAP: ixshift = mod (ixshift, ncols) iyshift = mod (iyshift, nlines) } # Set the boundary extension values. nbpix = max (abs (ixshift), abs (iyshift)) call imseti (im1, IM_NBNDRYPIX, nbpix) call imseti (im1, IM_TYBNDRY, boundary_type) if (boundary_type == BT_CONSTANT) call imsetr (im1, IM_BNDRYPIXVAL, constant) # Get column boundaries in the input image. x1col = max (-ncols + 1, - ixshift + 1) x2col = min (2 * ncols, ncols - ixshift) call amovkl (long (1), v, IM_MAXDIM) # Shift the image using the appropriate data type operators. switch (IM_PIXTYPE(im1)) { case TY_SHORT: do i = 1, nlines { if (impnls (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2s (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovs (Mems[buf1], Mems[buf2], ncols) } case TY_INT: do i = 1, nlines { if (impnli (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2i (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovi (Memi[buf1], Memi[buf2], ncols) } case TY_USHORT, TY_LONG: do i = 1, nlines { if (impnll (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2l (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovl (Meml[buf1], Meml[buf2], ncols) } case TY_REAL: do i = 1, nlines { if (impnlr (im2, buf2, v) == EOF) call error (5, wrerr) yline = i - iyshift buf1 = imgs2r (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (5, wrerr) call amovr (Memr[buf1], Memr[buf2], ncols) } case TY_DOUBLE: do i = 1, nlines { if (impnld (im2, buf2, v) == EOF) call error (0, wrerr) yline = i - iyshift buf1 = imgs2d (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (0, wrerr) call amovd (Memd[buf1], Memd[buf2], ncols) } case TY_COMPLEX: do i = 1, nlines { if (impnlx (im2, buf2, v) == EOF) call error (0, wrerr) yline = i - iyshift buf1 = imgs2x (im1, x1col, x2col, yline, yline) if (buf1 == EOF) call error (0, wrerr) call amovx (Memx[buf1], Memx[buf2], ncols) } default: call error (6, "ISHIFTXY: Unknown IRAF type.") } end # RG_XFSHIFTIM -- Shift a 1 or 2D image by a fractional pixel amount # in x and y. procedure rg_xfshiftim (im1, im2, xshift, yshift, interpstr, boundary_type, constant) pointer im1 #I pointer to input image pointer im2 #I pointer to output image real xshift #I shift in x direction real yshift #I shift in y direction char interpstr[ARB] #I type of interpolant int boundary_type #I type of boundary extension real constant #I value of constant for boundary extension int i, interp_type, nsinc, nincr int ncols, nlines, nbpix, fstline, lstline, nxymargin int cin1, cin2, nxin, lin1, lin2, nyin int lout1, lout2, nyout real xshft, yshft, deltax, deltay, dx, dy, cx, ly pointer sp, x, y, msi, sinbuf, soutbuf bool fp_equalr() int msigeti() pointer imps2r() errchk imgs2r, imps2r errchk msiinit, msifree, msifit, msigrid errchk smark, salloc, sfree begin ncols = IM_LEN(im1,1) nlines = IM_LEN(im1,2) # Check for out of bounds shift. if (xshift < -ncols || xshift > ncols) call error (0, "XC_SHIFTIM: X shift out of bounds.") if (yshift < -nlines || yshift > nlines) call error (0, "XC_SHIFTIM: Y shift out of bounds.") # Get the real shift. if (boundary_type == BT_WRAP) { xshft = mod (xshift, real (ncols)) yshft = mod (yshift, real (nlines)) } else { xshft = xshift yshft = yshift } # Allocate temporary space. call smark (sp) call salloc (x, 2 * ncols, TY_REAL) call salloc (y, 2 * nlines, TY_REAL) sinbuf = NULL # Define the x and y interpolation coordinates. dx = abs (xshft - int (xshft)) if (fp_equalr (dx, 0.0)) deltax = 0.0 else if (xshft > 0.) deltax = 1. - dx else deltax = dx dy = abs (yshft - int (yshft)) if (fp_equalr (dy, 0.0)) deltay = 0.0 else if (yshft > 0.) deltay = 1. - dy else deltay = dy # Initialize the 2-D interpolation routines. call msitype (interpstr, interp_type, nsinc, nincr, cx) if (interp_type == II_BILSINC || interp_type == II_BISINC) call msisinit (msi, interp_type, nsinc, 1, 1, deltax - nint (deltax), deltay - nint (deltay), 0.0) else call msisinit (msi, interp_type, nsinc, 1, 1, cx, cx, 0.0) # Set boundary extension parameters. if (interp_type == II_BISPLINE3) nxymargin = NMARGIN_SPLINE3 else if (interp_type == II_BISINC || interp_type == II_BILSINC) nxymargin = msigeti (msi, II_MSINSINC) else nxymargin = NMARGIN nbpix = max (int (abs(xshft)+1.0), int (abs(yshft)+1.0)) + nxymargin call imseti (im1, IM_NBNDRYPIX, nbpix) call imseti (im1, IM_TYBNDRY, boundary_type) if (boundary_type == BT_CONSTANT) call imsetr (im1, IM_BNDRYPIXVAL, constant) # Define the x interpolation coordinates. deltax = deltax + nxymargin if (interp_type == II_BIDRIZZLE) { do i = 1, ncols { Memr[x+2*i-2] = i + deltax - 0.5 Memr[x+2*i-1] = i + deltax + 0.5 } } else { do i = 1, ncols Memr[x+i-1] = i + deltax } # Define the y interpolation coordinates. deltay = deltay + nxymargin if (interp_type == II_BIDRIZZLE) { do i = 1, NYOUT { Memr[y+2*i-2] = i + deltay - 0.5 Memr[y+2*i-1] = i + deltay + 0.5 } } else { do i = 1, NYOUT Memr[y+i-1] = i + deltay } # Define column range in the input image. cx = 1. - nxymargin - xshft if ((cx <= 0.) && (! fp_equalr (dx, 0.0))) cin1 = int (cx) - 1 else cin1 = int (cx) cin2 = ncols - xshft + nxymargin + 1 nxin = cin2 - cin1 + 1 # Loop over output sections. for (lout1 = 1; lout1 <= nlines; lout1 = lout1 + NYOUT) { # Define range of output lines. lout2 = min (lout1 + NYOUT - 1, nlines) nyout = lout2 - lout1 + 1 # Define correspoding range of input lines. ly = lout1 - nxymargin - yshft if ((ly <= 0) && (! fp_equalr (dy, 0.0))) lin1 = int (ly) - 1 else lin1 = int (ly) lin2 = lout2 - yshft + nxymargin + 1 nyin = lin2 - lin1 + 1 # Get appropriate input image section and compute the coefficients. if ((sinbuf == NULL) || (lin1 < fstline) || (lin2 > lstline)) { fstline = lin1 lstline = lin2 call rg_buf (im1, cin1, cin2, lin1, lin2, sinbuf) call msifit (msi, Memr[sinbuf], nxin, nyin, nxin) } # Output the image section. soutbuf = imps2r (im2, 1, ncols, lout1, lout2) if (soutbuf == EOF) call error (0, "GSHIFTXY: Error writing output image.") # Evaluate the interpolant. call msigrid (msi, Memr[x], Memr[y], Memr[soutbuf], ncols, nyout, ncols) } call msifree (msi) call sfree (sp) end # RG_BUF -- Procedure to provide a buffer of image lines with minimum reads procedure rg_buf (im, col1, col2, line1, line2, buf) pointer im #I pointer to input image int col1, col2 #I column range of input buffer int line1, line2 #I line range of input buffer pointer buf #I buffer int i, ncols, nlines, nclast, llast1, llast2, nllast pointer buf1, buf2 pointer imgs2r() begin ncols = col2 - col1 + 1 nlines = line2 - line1 + 1 if (buf == NULL) { call malloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } else if ((nlines != nllast) || (ncols != nclast)) { call realloc (buf, ncols * nlines, TY_REAL) llast1 = line1 - nlines llast2 = line2 - nlines } if (line1 < llast1) { do i = line2, line1, -1 { if (i > llast1) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } else if (line2 > llast2) { do i = line1, line2 { if (i < llast2) buf1 = buf + (i - llast1) * ncols else buf1 = imgs2r (im, col1, col2, i, i) buf2 = buf + (i - line1) * ncols call amovr (Memr[buf1], Memr[buf2], ncols) } } llast1 = line1 llast2 = line2 nclast = ncols nllast = nlines end