.help skywcs Oct00 xtools .ih NAME skywcs -- sky coordinates package .ih SYNOPSIS .nf stat = sk_decwcs (ccsystem, mw, coo, imcoo) stat = sk_decwstr (ccsystem, coo, imcoo) stat = sk_decim (im, wcs, mw, coo) sk_enwcs (coo, ccsystem, maxch) newcoo = sk_copy (coo) sk_iiprint (label, imagesys, mw, coo) sk_iiwrite (fd, label, imagesys, mw, coo) [id]val = sk_stat[id] (coo, param) sk_stats (coo, param, str, maxch) sk_set[id] (coo, param, [id]val) sk_sets (coo, param, str) sk_ultran (incoo, outcoo, ilng, ilat, olng, olat, npts) sk_lltran (incoo, outoo, ilng, ilat, ipmlng, ipmlat, px, rv, olng, olat) sk_equatorial (incoo, outcoo, ilng, ilat, ipmlng, ipmlat, px, rv, olng, olat) sk_saveim (coo, mw, im) sk_close (coo) .fi .ih DESCRIPTION The skywcs package contains a simple set of routines for managing sky coordinate information and for transforming from one sky coordinate system to another. The sky coordinate system is defined either by a system name, e.g. "J2000", "galactic", etc. or by an image system name, e.g. "dev$ypix" or "dev$ypix world". The skywcs routine are layered on the Starlink Positional Astronomy library SLALIB which is installed in the IRAF MATH package. Type "help slalib option=sys" for more information about SLALIB. .ih NOTES An "include " statement must be included in the calling program to make the skywcs package parameter definitions visible to the calling program. The sky coordinate descriptor is created with a call to one of the sk_decwcs sk_decwstr or sk_imwcs routines. If the source of sky coordinate descriptor is an image then an IRAF MWCS descriptor will be returned with the sky oordinate descriptor. The sky coordinate descriptor is freed with a call to sk_close. A separate call to mw_close must be made to free the MWCS descriptor if one was allocated. By default the main skywcs coordinate transformation routine sk_ultran assumes that the input and output sky coordinates are in hours and degrees if the input and output coordinate systems are equatorial, otherwise the coordinates are assumed to be in degrees and degrees. The default input and output sky coordinate units can be reset with calls to sk_seti. Two lower level coordinate transformations for handling proper motions sk_lltran and sk_equatorial are also available. These routines expect the input and output coordinates and proper motions to be in radians. Calling programs working with both sky coordinate and MWCS descriptors need to be aware that the MWCS routines assume that all sky coordinates must be input in degrees and will be output in degrees and adjust their code accordingly. The skywcs routine sk_saveim can be used to update an image header. .ih EXAMPLES .nf Example 1: Convert from B1950 coordinates to J2000 coordinates. include .... # Open input coordinate system. instat = sk_decwstr ("B1950", incoo, NULL) if (instat == ERR) { call sk_close (incoo) return } # Open output coordinate system. outstat = sk_decwstr ("J2000", outcoo, NULL) if (outstat == ERR) { call sk_close (outcoo) return } # Do the transformation assuming the input coordinates are in hours # and degrees. The output coordinates will be in hours and degrees # as well. call sk_ultran (incoo, outcoo, rain, decin, raout, decout, npts) # Close the coordinate descriptors. call sk_close (incoo) call sk_close (outcoo) ... Example 2: Repeat example 1 but convert to galactic coordinates. include .... # Open the input coordinate system. instat = sk_decwstr ("B1950", incoo, NULL) if (instat == ERR) { call sk_close (incoo) return } # Open the output coordinate system. outstat = sk_decwstr ("galactic", outcoo, NULL) if (outstat == ERR) { call sk_close (outcoo) return } # Do the transformation assuming the input coordinates are in hours and # degrees. The output coordinates will be in degrees and degrees. call sk_ultran (incoo, outcoo, rain, decin, raout, decout, npts) # Close the coordinate descriptors. call sk_close (incoo) call sk_close (outcoo) ... Example 3: Convert a grid of pixel coordinates in the input image to the equivalent pixel coordinate in the output image using the image world coordinate systems to connect the two. include .... # Mwref will be defined because the input system is an image. refstat = sk_decwcs ("refimage logical", mwref, refcoo, NULL) if (refstat == ERR || mwref == NULL) { if (mwref != NULL) call mw_close (mwref) call sk_close (refcoo) return } # Set the reference coordinate descriptor so it expects input in degrees # and degrees. call sk_seti (refcoo, S_NLNGUNUTS, SKY_DEGREES) call sk_seti (refcoo, S_NLATUNUTS, SKY_DEGREES) # Mwout will be defined because the output system is an image. outstat = sk_decwcs ("image logical", mwout, outcoo, NULL) if (outstat == ERR || mwout == NULL) { if (mwout != NULL) call mw_close (mwout) call sk_close (outcoo) call mw_close (mwref) call sk_close (refcoo) return } # Set the output coordinate descriptor so it will output coordinates # in degrees and degrees. call sk_seti (outcoo, S_NLNGUNUTS, SKY_DEGREES) call sk_seti (outcoo, S_NLATUNUTS, SKY_DEGREES) # Compute pixel grid in refimage and store coordinate in the arrays # xref and yref. npts = 0 do j = 1, IM_LEN(im,2), 100 { do i = 1, IM_LEN(im,1), 100 { npts = npts + 1 xref[npts] = i yref[npts] = j } } # Convert xref and yref to celestial coordinates raref and decref using # mwref. The output coordinates will be in degrees and degrees. ctref = mw_sctran (mwref, "logical", "world", 03B) do i = 1, npts call mw_c2trand (ctref, xref[i], yref[i], raref[i], decref[i]) call ct_free (ctref) # Convert the reference celestial coordinates to the output celestial # coordinate system using the coordinate descriptors. call sk_ultran (refcoo, outcoo, raref, decref, raout, decout, npts) # Convert the output celestial coordinates to pixel coordinates in # the other image using mwout. ctout = mw_sctran (mwout, "world", "logical", 03B) do i = 1, npts call mw_c2trand (ctout, raout[i], decout[i], xout[i], yout[i]) call ct_free (ctout) # Print the input and output pixel coordinates. do i = 1, npts { call printf ("%10.3f %10.3f %10.3f %10.3f\n") call pargd (xref[i]) call pargd (yref[i]) call pargd (xout[i]) call pargd (yout[i]) } # Tidy up. call mw_close (mwref) call mw_close (mwout) call sk_close (refcoo) call sk_close (outcoo) Example 4: Convert a 2D image with an J2000 tangent plane projection wcs to the equivalent galactic wcs. The transformation requires a shift in origin and a rotation. Assume that the ra axis is 1 and the dec axis is 2. The details of how to compute the rotation are not shown here. See the imcctran task for details. include include ... # Open image. im = immap (image, READ_WRITE, 0) # Open the image coordinate system. instat = sk_decim (im, "logical", mwin, cooin) if (instat == ERR || mwin == NULL) { ... call sk_close (cooin) ... } # Get the dimensions of the mwcs descriptor. This should be 2. ndim = mw_ndim (mwin, MW_NPHYSDIM) # Get the default coordinates to degrees and degreees. call sk_seti (cooin, S_NLNGUNITS, SKY_DEGREES) call sk_seti (cooin, S_NATGUNITS, SKY_DEGREES) # Open the output coordinate system. Mwout is NULL because this system # is not an image. outstat = sk_decwstr ("galactic", mwout, cooout, cooin) if (outstat == ERR) { ... call sk_close (outstat) ... } # Make a copy of the mwcs descriptor. mwout = mw_newcopy (mwin) # Allocate space for the r and w vectors and cd matrix. call malloc (r, ndim, TY_DOUBLE) call malloc (w, ndim, TY_DOUBLE) call malloc (cd, ndim * ndim, TY_DOUBLE) call malloc (newcd, ndim * ndim, TY_DOUBLE) # Assume for simplicty that the MWCS LTERM is the identify transform. # so we don't have to worry about it. Get the WTERM which consists # of r the reference point in pixels, w the reference point in degrees, # and the cd matrix in degrees per pixel. call mw_gwtermd (mwin, Memd[r], Memd[w], Memd[cd], ndim) # Convert the world coordinates zero point. The pixel zero point # remains the same. tilng = Memd[w] tilat = Memd[w+1] call sk_ultran (incoo, outcoo, tilng, tilat, tolng, tolat, 1) Memd[w] = tolng Memd[w+1] = tolat # Figure out how much to rotate the coordinate system and edit the # compute a new CD matrix. Call it newcd. ... # Enter the new CD matrix and zero point. call mw_swterm (mwout, Memd[r], Memd[w], Memd[newcd], ndim) # Update the header. call sk_saveim (cooout, mwout, im) call mw_saveim (mwout, im) ... # Tidy up. call mfree (r, TY_DOUBLE) call mfree (w, TY_DOUBLE) call mfree (cd, TY_DOUBLE) call mfree (newcd, TY_DOUBLE) call mw_close (mwin) call mw_close (mwout) call sk_close (cooin) call sk_close (cooout) call imunmap (im) .fi .endhelp