# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. include include "stdgraph.h" .help stg_encode .nf _________________________________________________________________________ STG_ENCODE -- Table driven binary encoder/decoder. The encoder (which can also decode) processes a format string, also referred to as a program, to either encode an output string or decode an input string. Internally the encoder operates in two modes, copy mode and execute mode. In copy mode all format characters are copied to the output except the following special characters: ' escape next character (literal) % begin a formatted output string ( switch to execute mode (stack driven, RPN interpreter) An ( appearing in the format string causes a mode switch to execute mode. In execute mode characters are metacode instructions to be executed. An unescaped ) causes reversion to copy mode. Parens may not be nested; an ( in execute mode is an instruction to push the binary value of ( on the stack, and an ) in copy mode is copied to the output as a character. In execute mode the following characters are recognized as special instructions. All other characters are instructions too, telling the encoder to push the ASCII value of the character on the stack. ' escape next character (recognized everywhere) % formatted output ) revert to copy mode #nnn push signed decimal integer number nnn $ switch case construct . pop number from stack and place in output string , get next character from input string and push on stack & modulus (similar to AND of low bits) + add (similar to OR) - subtract (similar to AND) * multiply (shift left if pwr of 2) / divide (shift right if pwr of 2) < less than (0=false, 1=true) > greater than (0=false, 1=true) = equals (0=false, 1=true) ; branch if: ;. The ; is at offset zero. 0-9 push register !N pop stack into register N !! pop N from stack and output an N millisecond delay The encoder communicates with the outside world via three general purpose data structures. registers 0-9 (integer only) memory char array program char array The registers are used for parameter input and output as well as for storing intermediate results. R 1-3 are used for input and output arguments. R 4-9 and R0 (R10) are reserved for use by the program. R11 is the i/o pointer into encoder memory, used for character input and output. R12 should contain the maximum memory address upon input. Memory may be used for anything but is normally used only for the input string or output string. The program is the format string. Further documentation is given in the GIO reference manual. .endhelp _____________________________________________________________________ define SZ_FORMAT 10 # max length printf format define SZ_NUMSTR 10 # encoded numeric string define R1 registers[1] # argument define R2 registers[2] # argument define R3 registers[3] # argument define R4 registers[4] # scratch define R5 registers[5] # scratch define R6 registers[6] # scratch define R7 registers[7] # scratch define R8 registers[8] # scratch define R9 registers[9] # scratch define R0 registers[10] # scratch define IOP registers[11] # i/o pointer into encoder memory define TOP registers[12] # max memory location # Inline macros. define memory_overflow_ 1 define stack_underflow_ 2 define stack_overflow_ 3 define input {$1=memory[iop];iop=iop+1} define output {memory[iop]=($1);iop=iop+1;if(iop>top)goto memory_overflow_} define push {stack[sp]=($1);sp=sp+1} define pop {sp=sp-1;$1=stack[sp]} # STG_ENCODE -- Interpret a program, encoding values passed in registers into # memory, or decoding memory into registers. int procedure stg_encode (program, memory, registers) char program[ARB] # program to be executed char memory[ARB] # data space int registers[NREGISTERS] # general purpose registers int x, y, num, ch, status int stack[LEN_STACK] int sp, pc, iop, top, incase common /sgecom/ pc, sp, iop, top, incase, stack int sge_execute() include "stdgraph.com" begin # TEK format, %t. This format deserves special treatment due to the # prevalence of tektronix compatible graphics terminals. if (program[1] == '%' && program[2] == 't') { x = R1 y = R2 iop = IOP + 4 if (iop > top) goto memory_overflow_ memory[iop-4] = g_hixy[y+1] memory[iop-3] = g_loy[y+1] memory[iop-2] = g_hixy[x+1] memory[iop-1] = g_lox[x+1] IOP = iop if (program[3] == EOS) return (OK) } # Process a general format string (as well as any chars following the # %t format). incase = NO iop = IOP top = TOP pc = 1 sp = 1 for (ch=program[pc]; ch != EOS; ch=program[pc]) { pc = pc + 1 if (ch == '%' && program[pc] != EOS) { if (program[pc] == 't') { # Tek format again. pc = pc + 1 x = R1 y = R2 iop = iop + 4 if (iop > top) goto memory_overflow_ memory[iop-4] = g_hixy[y+1] memory[iop-3] = g_loy[y+1] memory[iop-2] = g_hixy[x+1] memory[iop-1] = g_lox[x+1] } else { # Extract a general format specification and use it to # encode the number on top of the stack. pop (num) if (sp < 1) { IOP = iop return (stack_underflow_) } else call sge_printf (num, memory, iop, top, program, pc) } } else if (ch == '(' && program[pc] != EOS) { # Switch to execute mode. status = sge_execute (program, memory, registers) if (status != OK) return (status) } else if (ch == '\'' && program[pc] != EOS) { # Escape next character. output (program[pc]) pc = pc + 1 } else { # Copy an ordinary character to the output string. output (ch) } } IOP = iop return (OK) memory_overflow_ IOP = iop return (memory_overflow_) end # SGE_EXECUTE -- Execute a metacode program stored in encoder memory starting # at the location of the PC. The stack, program counter, i/o pointer, and # registers are shared by the copy and execute mode procedures via common. int procedure sge_execute (program, memory, registers) char program[ARB] # program to be executed char memory[ARB] # data space int registers[NREGISTERS] # general purpose registers int num, ch, a, b, neg, x, y int stack[LEN_STACK] int sp, pc, iop, top, incase, msec, npad, baud, envgeti(), btoi() common /sgecom/ pc, sp, iop, top, incase, stack include "stdgraph.com" errchk envgeti begin # Execute successive single character instructions until either ) or # EOS is seen. On a good host machine this case will be compiled as # a vectored goto with a loop overhead of only a dozen or so machine # instructions per loop. for (ch=program[pc]; ch != EOS; ch=program[pc]) { pc = pc + 1 switch (ch) { case '\'': # Escape next character (recognized everywhere). ch = program[pc] if (ch != EOS) { # Push ASCII value of character. push (ch) pc = pc + 1 } case '%': if (program[pc] == 't') { # Tek format again. pc = pc + 1 x = R1 y = R2 iop = iop + 4 if (iop > top) goto memory_overflow_ memory[iop-4] = g_hixy[y+1] memory[iop-3] = g_loy[y+1] memory[iop-2] = g_hixy[x+1] memory[iop-1] = g_lox[x+1] } else { # Formatted output. if (program[pc] != EOS) { pop (num) call sge_printf (num, memory, iop, top, program, pc) } else output (ch) } case ')': # End interpreter mode. return (OK) case '#': # Push signed decimal integer number. neg = NO if (program[pc] == '-') { neg = YES pc = pc + 1 } num = 0 while (IS_DIGIT (program[pc])) { num = num * 10 + TO_INTEG (program[pc]) pc = pc + 1 } if (neg == YES) push (-num) else push (num) case '$': # Switch case instruction. if (incase == NO) { # Pop the switch off the stack. pop (num) # Search for case number 'num'. for (ch=program[pc]; ch != EOS; ch=program[pc]) { if (ch == '$') { # End of switch statement. pc = pc + 1 incase = NO break } else if (program[pc+1] == '-') { # Range of cases. a = TO_INTEG (ch) b = TO_INTEG (program[pc+2]) pc = pc + 3 if (a <= num && num <= b) { incase = YES break } } else if (ch == 'D' || TO_INTEG(ch) == num) { # Default or requested case. pc = pc + 1 incase = YES break } # Advance to the next case. Leave pc pointing to the # N of case $N. if (ch != '$' && incase == NO) { while (program[pc] != EOS && program[pc] != '$') pc = pc + 1 if (program[pc] == '$') pc = pc + 1 } } } else { # $ encountered delimiting a case. Search forward for # $$ or EOS. if (program[pc] != '$') for (ch=program[pc]; ch != EOS; ch=program[pc]) { pc = pc + 1 if (ch == '$' && program[pc] == '$') break } if (program[pc] == '$') pc = pc + 1 incase = NO } case '.': # Pop number from stack and place in output string as a # binary character. pop (num) output (num) case ',': # Get next character from input string and push on stack. input (num) push (num) case '&': # Modulus (similar to AND of low bits). pop (b) pop (a) push (mod (a, b)) case '+': # Add (similar to OR). pop (b) pop (a) push (a + b) case '-': # Subtract (similar to AND). pop (b) pop (a) push (a - b) case '*': # Multiply (shift left if pwr of 2). pop (b) pop (a) push (a * b) case '/': # Divide (shift right if pwr of 2). pop (b) pop (a) push (a / b) case '<': # Less than (0=false, 1=true). pop (b) pop (a) push (btoi (a < b)) case '>': # Greater than (0=false, 1=true). pop (b) pop (a) push (btoi (a > b)) case '=': # Equals (0=false, 1=true). pop (b) pop (a) push (btoi (a == b)) case ';': # If 2nd value on stack is true add 1st value on stack to PC. # Example: "12<#-8;". The ; is at offset zero. pop (a) pop (b) if (b != 0) pc = pc - 1 + a case '0': # Push contents of register 0 (10). push (R0) case '1': # Push contents of register 1. push (R1) case '2': # Push contents of register 2. push (R2) case '3': # Push contents of register 3. push (R3) case '4': # Push contents of register 4. push (R4) case '5': # Push contents of register 5. push (R5) case '6': # Push contents of register 6. push (R6) case '7': # Push contents of register 7. push (R7) case '8': # Push contents of register 8. push (R8) case '9': # Push contents of register 9. push (R9) case '!': if (program[pc] == '!') { # !!: Pop stack and generate delay. pc = pc + 1 pop (msec) iferr (baud = envgeti ("ttybaud")) baud = 9600 npad = real(msec) * (real(baud) / 8. / 1000.) while (npad > 0) { output (PADCHAR) npad = npad - 1 } } else { # !N: Pop stack into register N. num = TO_INTEG (program[pc]) if (num >= 0 && num <= 9) { if (num == 0) num = 10 pop (registers[num]) pc = pc + 1 } else output (ch) } default: # Push ASCII value of character. push (ch) } if (sp <= 0) return (stack_underflow_) if (sp > LEN_STACK) return (stack_overflow_) } return (OK) memory_overflow_ return (memory_overflow_) end # SGE_PRINTF -- Process a %.. format specification. The number to be encoded # has already been popped from the stack into the first argument. The encoded # number is returned in memory at IOP, leaving IOP positioned to the first # char following the encoded number. The format used to encode the number is # extracted from the program starting at PC. PC is left pointing to the first # character following the format. procedure sge_printf (number, memory, iop, top, program, pc) int number # number to be encoded char memory[top] # output buffer int iop # index of first char to be written (in/out) int top # size of output buffer char program[ARB] # contains printf format string int pc # index of first char of format string (in/out) char format[SZ_FORMAT] char numstr[SZ_NUMSTR] int op, ch, junk int gstrcpy(), itoc() begin # Extract format %w.dC, a string of digits, -, or ., delimited by a # letter. The format %w.dr is followed by a single character which # must also be included in the format string. format[1] = '%' op = 2 for (ch=program[pc]; ch != EOS; ch=program[pc]) { pc = pc + 1 format[op] = ch op = op + 1 if (IS_LOWER(ch)) { if (ch == 'r' && program[pc] != EOS) { # Radix digit follows %r. format[op] = program[pc] op = op + 1 pc = pc + 1 } break } } format[op] = EOS # Encode the number using the extracted format string. The case of # a simple decimal encoding is optimized. if (format[2] == 'd') junk = itoc (number, numstr, SZ_NUMSTR) else { iferr { call sprintf (numstr, SZ_NUMSTR, format) call pargi (number) } then numstr[1] = EOS } # Move the encoded number to encoder memory, advancing the i/o # pointer and taking care not to overrun memory. Leave the iop # pointing AT, not after, the EOS output by gstrcpy. iop = iop + gstrcpy (numstr, memory[iop], top - iop + 1) end