# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. # CV_BCHEB -- Procedure to evaluate all the non-zero Chebyshev functions for # a set of points and given order. procedure rcv_bcheb (x, npts, order, k1, k2, basis) real x[npts] # array of data points int npts # number of points int order # order of polynomial, order = 1, constant real k1, k2 # normalizing constants real basis[ARB] # basis functions int k, bptr begin bptr = 1 do k = 1, order { if (k == 1) call amovkr (real(1.0), basis, npts) else if (k == 2) call altar (x, basis[bptr], npts, k1, k2) else { call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call amulkr (basis[bptr], real(2.0), basis[bptr], npts) call asubr (basis[bptr], basis[bptr-2*npts], basis[bptr], npts) } bptr = bptr + npts } end # CV_BLEG -- Procedure to evaluate all the non zero Legendre function # for a given order and set of points. procedure rcv_bleg (x, npts, order, k1, k2, basis) real x[npts] # number of data points int npts # number of points int order # order of polynomial, 1 is a constant real k1, k2 # normalizing constants real basis[ARB] # array of basis functions int k, bptr real ri, ri1, ri2 begin bptr = 1 do k = 1, order { if (k == 1) call amovkr (real(1.0), basis, npts) else if (k == 2) call altar (x, basis[bptr], npts, k1, k2) else { ri = k ri1 = (real(2.0) * ri - real(3.0)) / (ri - real(1.0)) ri2 = - (ri - real(2.0)) / (ri - real(1.0)) call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], npts) call awsur (basis[bptr], basis[bptr-2*npts], basis[bptr], npts, ri1, ri2) } bptr = bptr + npts } end # CV_BSPLINE1 -- Evaluate all the non-zero spline1 functions for a set # of points. procedure rcv_bspline1 (x, npts, npieces, k1, k2, basis, left) real x[npts] # set of data points int npts # number of points int npieces # number of polynomial pieces minus 1 real k1, k2 # normalizing constants real basis[ARB] # basis functions int left[ARB] # indices of the appropriate spline functions int k begin call altar (x, basis[1+npts], npts, k1, k2) call achtri (basis[1+npts], left, npts) call aminki (left, npieces, left, npts) do k = 1, npts { basis[npts+k] = max (real(0.0), min (real(1.0), basis[npts+k] - left[k])) basis[k] = max (real(0.0), min (real(1.0), real(1.0) - basis[npts+k])) } end # CV_BSPLINE3 -- Procedure to evaluate all the non-zero basis functions # for a cubic spline. procedure rcv_bspline3 (x, npts, npieces, k1, k2, basis, left) real x[npts] # array of data points int npts # number of data points int npieces # number of polynomial pieces minus 1 real k1, k2 # normalizing constants real basis[ARB] # array of basis functions int left[ARB] # array of indices for first non-zero spline int i pointer sp, sx, tx real dsx, dtx begin # allocate space call smark (sp) call salloc (sx, npts, TY_REAL) call salloc (tx, npts, TY_REAL) # calculate the index of the first non-zero coeff call altar (x, Memr[sx], npts, k1, k2) call achtri (Memr[sx], left, npts) call aminki (left, npieces, left, npts) do i = 1, npts { Memr[sx+i-1] = max (real(0.0), min (real(1.0), Memr[sx+i-1] - left[i])) Memr[tx+i-1] = max (real(0.0), min (real(1.0), real(1.0) - Memr[sx+i-1])) } # calculate the basis function #call apowk$t (Mem$t[tx], 3, basis, npts) do i = 1, npts { dsx = Memr[sx+i-1] dtx = Memr[tx+i-1] basis[i] = dtx * dtx * dtx basis[npts+i] = real(1.0) + dtx * (real(3.0) + dtx * (real(3.0) - real(3.0) * dtx)) basis[2*npts+i] = real(1.0) + dsx * (real(3.0) + dsx * (real(3.0) - real(3.0) * dsx)) basis[3*npts+i] = dsx * dsx * dsx } #call apowk$t (Mem$t[sx], 3, basis[1+3*npts], npts) # release space call sfree (sp) end