DOUBLE PRECISION FUNCTION slDSEPV (V1, V2) *+ * - - - - - - * D S E P V * - - - - - - * * Angle between two vectors. * * (double precision) * * Given: * V1 d(3) first vector * V2 d(3) second vector * * The result is the angle, in radians, between the two vectors. It * is always positive. * * Notes: * * 1 There is no requirement for the vectors to be unit length. * * 2 If either vector is null, zero is returned. * * 3 The simplest formulation would use dot product alone. However, * this would reduce the accuracy for angles near zero and pi. The * algorithm uses both cross product and dot product, which maintains * accuracy for all sizes of angle. * * Called: slDVXV, slDVN, slDVDV * * Last revision: 14 June 2005 * * Copyright P.T.Wallace. All rights reserved. * * License: * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (see SLA_CONDITIONS); if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301 USA * * Copyright (C) 1995 Association of Universities for Research in Astronomy Inc. *- IMPLICIT NONE DOUBLE PRECISION V1(3),V2(3) DOUBLE PRECISION V1XV2(3),WV(3),S,C DOUBLE PRECISION slDVDV * Modulus of cross product = sine multiplied by the two moduli. CALL slDVXV(V1,V2,V1XV2) CALL slDVN(V1XV2,WV,S) * Dot product = cosine multiplied by the two moduli. C = slDVDV(V1,V2) * Angle between the vectors. IF ( S.NE.0D0 .OR. C.NE.0D0 ) THEN slDSEPV = ATAN2(S,C) ELSE slDSEPV = 0D0 END IF END