include include include include "apertures.h" # AP_PROFILE -- Determine spectrum profile with pixel rejection. # # The profile is determined by dividing each dispersion point by an estimate # of the spectrum and then smoothing and normalizing to unit integral. # This routine has two algorithms (procedures) for smoothing, one for nearly # aligned spectra and one for tilted spectra. The selection is determined # by the calling program and signaled by whether there is a variation in # the profile offsets. For both smoothing algorithms the same iterative # rejection algorithm may be used to eliminate deviant points from affecting # the profile. This rejection is selected by the "clean" parameter. # A plot of the final profile along the dispersion may be made for the # special plotfile "debugfits" or "debugall". # # Dispersion points with saturated pixels are ignored as well a when the # total sky subtracted flux is negative. procedure ap_profile (im, ap, dbuf, nc, nl, c1, l1, sbuf, svar, profile, nx, ny, xs, ys, asi) pointer im # IMIO pointer pointer ap # Aperture structure pointer dbuf # Data buffer int nc, nl # Size of data buffer int c1, l1 # Origin of data buffer pointer sbuf # Sky values (NULL if none) pointer svar # Sky variances real profile[ny,nx] # Profile (returned) int nx, ny # Size of profile array int xs[ny], ys # Origin of profile array pointer asi # Image interpolator for edge pixel weighting real gain # Gain real rdnoise # Readout noise real saturation # Maximum value for an unsaturated pixel bool clean # Clean cosmic rays? real lsigma, usigma # Rejection sigmas. int fd, ix, iy, ix1, ix2, xs1, xs2, nsum int i, niterate, ixrej, iyrej, nrej, nreject real p, s, chisq, tfac, rrej, predict, var0, var, vmin, resid, wt1, wt2, dat pointer sp, str, spec, x1, x2, y, reject, xreject, data, sky, cv, gp int apgeti() real apgetr(), ap_cveval(), apgimr() bool apgetb() errchk salloc, ap_horne, ap_marsh, apgimr, ap_asifit begin # Allocate memory. Adjust pointers to be one indexed. call smark (sp) call salloc (str, SZ_LINE, TY_CHAR) call salloc (spec, ny, TY_REAL) call salloc (x1, ny, TY_REAL) call salloc (x2, ny, TY_REAL) call salloc (y, ny, TY_REAL) call salloc (reject, nx*ny, TY_BOOL) if (sbuf == NULL) { call salloc (sky, nx, TY_REAL) sky = sky - 1 } spec=spec-1; x1=x1-1; x2=x2-1; y=y-1 # Get task parameters. gain = apgimr ("gain", im) rdnoise = apgimr ("readnoise", im) ** 2 saturation = apgetr ("saturation") if (!IS_INDEF(saturation)) saturation = saturation * gain lsigma = apgetr ("lsigma") usigma = apgetr ("usigma") clean = apgetb ("clean") if (clean) niterate = apgeti ("niterate") else niterate = 0 # Initialize. if (rdnoise == 0.) vmin = 1. else vmin = rdnoise if (sbuf == NULL) { call aclrr (Memr[sky+1], nx) var0 = rdnoise } cv = AP_CV(ap) # Set aperture limits and initialize rejection flags. call alimi (xs, ny, xs1, xs2) i = AP_AXIS(ap) p = AP_CEN(ap,i) + AP_LOW(ap,i) s = AP_CEN(ap,i) + AP_HIGH(ap,i) xreject = reject do iy = 1, ny { dat = ap_cveval (cv, real (iy + ys - 1)) - c1 + 1 Memr[x1+iy] = p + dat Memr[x2+iy] = s + dat Memr[x1+iy] = max (0.5, Memr[x1+iy]) + c1 - xs[iy] Memr[x2+iy] = min (nc + 0.49, Memr[x2+iy]) + c1 - xs[iy] ix1 = nint (Memr[x1+iy]) ix2 = nint (Memr[x2+iy]) Memr[y+iy] = iy do ix = 1, nx { if (ix < ix1 || ix > ix2) Memb[xreject] = false else Memb[xreject] = true xreject = xreject + 1 } } # Estimate spectrum by summing across the aperture with partial # pixel estimates at the aperture edges. The initial profile # estimates are obtained by normalizing by the spectrum estimate. # Profiles where the spectrum is below sky are set to zero. call aclrr (profile, nx * ny) nrej = 0 do iy = 1, ny { if (Memr[x1+iy] >= Memr[x2+iy]) { Memr[spec+iy] = 0. do ix = 1, nx profile[iy,ix] = 0. next } call ap_asifit (dbuf+(iy+ys-1-l1)*nc, nc, xs[iy]-c1+1, Memr[x1+iy]-c1+xs[iy], Memr[x2+iy]-c1+xs[iy], data, asi) if (sbuf != NULL) sky = sbuf + (iy - 1) * nx - 1 call ap_edge (asi, Memr[x1+iy]+1, Memr[x2+iy]+1, wt1, wt2) ix1 = nint (Memr[x1+iy]) ix2 = nint (Memr[x2+iy]) s = 0. do ix = ix1, ix2 { if (!IS_INDEF(saturation)) if (Memr[data+ix] > saturation) { s = 0. nrej = nrej + 1 break; } dat = Memr[data+ix] - Memr[sky+ix] if (ix1 == ix2) dat = wt1 * dat else if (ix == ix1) dat = wt1 * dat else if (ix == ix2) dat = wt2 * dat s = s + dat } if (s > 0.) { do ix = ix1, ix2 profile[iy,ix] = max (0., (Memr[data+ix]-Memr[sky+ix])/s) } else { do ix = ix1, ix2 profile[iy,ix] = 0. } Memr[spec+iy] = s } if (nrej == ny) call error (1, "All profiles contain saturated pixels") else if (nrej > 0) { call sprintf (Memc[str], SZ_LINE, "EXTRACT: %d profiles with saturated pixels in aperture %d") call pargi (nrej) call pargi (AP_ID(ap)) if (nrej < ny / 3) call ap_log (Memc[str], YES, NO, NO) else call ap_log (Memc[str], YES, NO, YES) } # Smooth the profile and possibly reject deviant pixels. nreject = 0 tfac = 2. do i = 0, niterate { # Estimate profile. if (xs1 == xs2) call ap_horne (im, cv, dbuf, nc, nl, c1, l1, Memr[spec+1], sbuf, svar, Memb[reject], profile, nx, ny, xs, ys, Memr[x1+1], Memr[x2+1]) else call ap_marsh (im, dbuf, nc, nl, c1, l1, Memr[spec+1], sbuf, svar, Memb[reject], profile, nx, ny, xs, ys, Memr[x1+1], Memr[x2+1]) if (i == niterate) break # Reject pixels. The rejection threshold is based on the overall # chi square. Pixels are rejected on the basis of the current # chi square and the largest residual not rejected is compared # against the final chi square to possibly trigger another round # of rejections. chisq = 0.; nsum = 0; ixrej = 0; iyrej = 0; rrej = 0.; nrej = 0 do iy = 1, ny { s = Memr[spec+iy] if (s <= 0.) next call ap_asifit (dbuf+(iy+ys-1-l1)*nc, nc, xs[iy]-c1+1, Memr[x1+iy]-c1+xs[iy], Memr[x2+iy]-c1+xs[iy], data, asi) if (sbuf != NULL) { sky = sbuf + (iy - 1) * nx - 1 var0 = rdnoise + Memr[svar+iy-1] } call ap_edge (asi, Memr[x1+iy]+1, Memr[x2+iy]+1, wt1, wt2) xreject = reject + (iy - 1) * nx - 1 ix1 = nint (Memr[x1+iy]) ix2 = nint (Memr[x2+iy]) do ix = ix1, ix2 { if (Memb[xreject+ix]) { nsum = nsum + 1 predict = max (0., s * profile[iy,ix] + Memr[sky+ix]) var = max (vmin, var0 + predict) resid = (Memr[data+ix] - predict) / sqrt (var) chisq = chisq + resid**2 if (resid < -tfac*lsigma || resid > tfac*usigma) { if (ix < ix1 || ix > ix2) p = 0. else if (ix1 == ix2) p = wt1 else if (ix == ix1) p = wt1 else if (ix == ix2) p = wt2 else p = 1 Memr[spec+iy] = Memr[spec+iy] - p * (Memr[data+ix] - predict) nrej = nrej + 1 Memb[xreject+ix] = false } else if (abs (resid) > abs (rrej)) { rrej = resid if (ix < ix1 || ix > ix2) p = 0. else if (ix1 == ix2) p = wt1 else if (ix == ix1) p = wt1 else if (ix == ix2) p = wt2 else p = 1 dat = p * (Memr[data+ix] - predict) ixrej = ix iyrej = iy } } } } if (nsum == 0) call error (1, "All pixels rejected") tfac = sqrt (chisq / nsum) if (rrej < -tfac * lsigma || rrej > tfac * usigma) { Memr[spec+iyrej] = Memr[spec+iyrej] - dat xreject = reject + (iyrej - 1) * nx - 1 Memb[xreject+ixrej] = false nrej = nrej + 1 } nreject = nreject + nrej if (nrej == 0) break } # These plots are too big for production work but can be turned on # for debugging. call ap_popen (gp, fd, "fits") if (gp != NULL) { ix1 = xs1 ix2 = xs2 + nx - 1 if (xs1 != xs2) { ix1 = ix1 + 1 ix2 = ix2 - 1 } do ix = ix1, ix2 { nrej = 0 do iy = 1, ny { i = ix - xs[iy] + 1 if (i < 1 || i > nx) next if (Memr[spec+iy] <= 0.) next data = dbuf + (iy + ys - 1 - l1) * nc + ix - c1 - 1 if (sbuf != NULL) s = Memr[sbuf+(iy-1)*nx+i-1] else s = Memr[sky+i] nrej = nrej + 1 Memr[y+nrej] = iy + ys - 1 Memr[x1+nrej] = max (-.1, min (1.1, (Memr[data+1] - s) / Memr[spec+iy])) Memr[x2+nrej] = profile[iy,i] } call gclear (gp) call gascale (gp, Memr[x1+1], nrej, 2) call grscale (gp, Memr[x2+1], nrej, 2) call gswind (gp, Memr[y+1], Memr[y+nrej], INDEF, INDEF) if (AP_AXIS(ap) == 1) { call sprintf (Memc[str], SZ_LINE, "Column %d") call pargi (ix) call glabax (gp, Memc[str], "Line", "Profile") } else { call sprintf (Memc[str], SZ_LINE, "Line %d") call pargi (ix) call glabax (gp, Memc[str], "Column", "Profile") } call gpmark (gp, Memr[y+1], Memr[x1+1], nrej, GM_POINT, 1., 1.) call gpline (gp, Memr[y+1], Memr[x2+1], nrej) } } call ap_pclose (gp, fd) # Log the number of rejected pixels. if (clean) { call sprintf (Memc[str], SZ_LINE, "EXTRACT: %d pixels rejected for profile from aperture %d") call pargi (nreject) call pargi (AP_ID(ap)) call ap_log (Memc[str], YES, NO, NO) } call sfree (sp) end # AP_HORNE -- Determine profile by fitting a low order function parallel to # dispersion along image lines or columns after dividing by a spectrum # estimate. An initial profile estimate and a rejection array are # required for setting the weights. This is a straightforward algorithm # similar to images.fit1d except that it is noninteractive. The fitting # function is fixed at a cubic spline and the number of pieces is set by # the amount of tilt such that there is one cubic spline piece per # passage across the tilted spectrum plus an amount based on the order # of the tracing function. It is named after Keith Horne # since this is what is outlined in his paper. The profile array is used # cleverly to minimize memory requirements. The storage order of the # profile array, which is transposed relative to the data, is determined # by this procedure. procedure ap_horne (im, cvtrace, dbuf, nc, nl, c1, l1, spec, sbuf, svar, reject, profile, nx, ny, xs, ys, x1, x2) pointer im # IMIO pointer pointer cvtrace # Trace pointer pointer dbuf # Data buffer int nc, nl # Size of data buffer int c1, l1 # Origin of data buffer real spec[ny] # Spectrum estimate pointer sbuf # Sky values (NULL if none) pointer svar # Sky variances bool reject[nx,ny] # Rejection flags real profile[ny,nx] # Initial profile in, improved profile out int nx, ny # Size of profile array int xs[ny], ys # Origin of profile array real x1[ny], x2[ny] # Aperture limits in profile array int cvtype # Curfit type int order # Order of curfit function. real rdnoise # Readout noise in RMS data numbers. int ix, iy, ierr real p, s, sk, var, vmin, var0, wmin pointer sp, y, w, cv, dbuf1, data, sky #int apgeti() int cvstati() real apgimr() errchk salloc, apgimr begin call smark (sp) call salloc (y, ny, TY_REAL) call salloc (w, ny, TY_REAL) # Get CL parameters #cvtype = apgeti ("e_function") #order = apgeti ("e_order") rdnoise = apgimr ("readnoise", im) ** 2 # Initialize. call alimr (x1, ny, p, s) cvtype = SPLINE3 order = int (s - p + 1) + max (0, cvstati (cvtrace, CVNCOEFF) - 2) #order = min (20, order) order = 2 * order call cvinit (cv, cvtype, order, 1., real (ny)) do iy = 1, ny Memr[y+iy-1] = iy if (rdnoise == 0.) vmin = 1. else vmin = rdnoise dbuf1 = dbuf + (ys - l1 - 1) * nc - c1 - 1 if (sbuf == NULL) { sk = 0. var0 = rdnoise } # For each line parallel to the dispersion divide by a spectrum # estimate and then fit the smoothing function. Use the input # profile and rejection array to set the weights. do ix = 1, nx { data = dbuf1 + ix if (sbuf != NULL) sky = sbuf - nx - 1 + ix wmin = MAX_REAL do iy = 1, ny { s = spec[iy] if (s > 0. && reject[ix,iy]) { if (sbuf != NULL) { sk = Memr[sky+iy*nx] var0 = rdnoise + Memr[svar+iy-1] } p = profile[iy,ix] var = max (vmin, var0 + max (0., s * p + sk)) var = (s ** 2) / var wmin = min (wmin, var) Memr[w+iy-1] = var profile[iy,ix] = (Memr[data+iy*nc+xs[iy]] - sk) / s } else Memr[w+iy-1] = 0. } if (wmin == MAX_REAL) call amovkr (1., Memr[w], ny) else call amaxkr (Memr[w], wmin / 10., Memr[w], ny) call cvfit (cv, Memr[y], profile[1,ix], Memr[w], ny, WTS_USER, ierr) call cvvector (cv, Memr[y], profile[1,ix], ny) call amaxkr (profile[1,ix], 0., profile[1,ix], ny) } call cvfree (cv) call sfree (sp) end # AP_MARSH -- Determine profile by Marsh algorithm (PASP V101, P1032, 1989). # This algorithm fits low order polynomials to weighted points sampled # at uniform intervals parallel to the aperture trace. The polynomials # are coupled through the weights and so requires a 2D matrix inversion. # This is a relatively slow algorithm but does provide low order smoothing # for arbitrary profile shapes in highly tilted spectra. An estimate # of the profile, a rejection array, sky and sky variance, and aperture # limit arrays are required. procedure ap_marsh (im, dbuf, nc, nl, c1, l1, spec, sbuf, svar, reject, profile, nx, ny, xs, ys, x1, x2) pointer im # IMIO pointer pointer dbuf # Data buffer int nc, nl # Size of data buffer int c1, l1 # Origin of data buffer real spec[ny] # Spectrum estimate pointer sbuf # Sky values (NULL if none) pointer svar # Sky variances bool reject[nx,ny] # Rejection flags real profile[ny,nx] # Initial profile in, improved profile out int nx, ny # Size of profile array int xs[ny], ys # Origin of profile array real x1[ny], x2[ny] # Aperture limits in profile array real spix # Polynomial pixel separation int npols # Number of polynomials int order # Order of function. real rdnoise # Readout noise in RMS data numbers. int il, jl, kl, ll, ix, iy, ix1, ix2, nside, nadd int ip, ip1, ip2, index1, index2, index3 real p, s, s2, dat, sk, var, vmin, var0 real dx0, dx1, dx2, dx3, dx4, xj, xk, xt, xz, qj, qk, xadd double sum1, sum2 pointer sp, work, work1, work2, work3, work4, ysum, data, sky int apgeti() real apgetr(), apgimr() errchk salloc, apgimr begin # Get CL parameters #npols = apgeti ("npols") spix = apgetr ("polysep") order = apgeti ("polyorder") rdnoise = apgimr ("readnoise", im) ** 2 # Set dimensions. npols = (x2[1] - x1[1] + 2) / spix spix = (x2[1] - x1[1] + 2) / real (npols) nside = npols * order nadd = nside * nside if (spix > 1.) call error (4, "Polynomial separation too large") # Allocate memory. One index pointers. call smark (sp) call salloc (work, nadd+3*nside, TY_REAL) call salloc (work4, nside, TY_INT) call salloc (ysum, ny, TY_REAL) work = work - 1 work1 = work + nadd work2 = work1 + nside work3 = work2 + nside work4 = work4 - 1 ysum=ysum-1 if (sbuf == NULL) { call salloc (sky, nx, TY_REAL) sky = sky - 1 } # Initialize. call aclrr (Memr[work+1], nadd+3*nside) call aclri (Memi[work4+1], nside) if (rdnoise == 0.) vmin = 1. else vmin = rdnoise if (sbuf == NULL) { call aclrr (Memr[sky+1], nx) var0 = rdnoise } # Factors for weights. dx0 = 0.5 - spix dx1 = abs (dx0) dx2 = 1. - (dx0 / spix) ** 2 dx3 = 0.5 + spix dx4 = sqrt (2.) * spix # Accumulate least terms for least squares matrix equation AX = B. # First accumulate B. do jl = 0, npols-1 { do iy = 1, ny { if (spec[iy] <= 0.) next xj = x1[iy] - 1 + spix * (real (jl) + 0.5) ix1 = nint (xj - spix) ix2 = nint (xj + spix) if (ix1 < 1 || ix2 > nx) { Memr[ysum+iy] = 0. next } data = dbuf + (iy + ys - 1 - l1) * nc + xs[iy] - c1 - 1 if (sbuf != NULL) { sky = sbuf + (iy - 1) * nx - 1 var0 = rdnoise + Memr[svar+iy-1] } # Evaluate qj, the contribution of polynomial number jl+1 # for the pixel ix1,jj. Four cases are considered. The # first two account for the triangular interpolation # function partially overlapping a pixel, on one side # only. The third is for the function wholly inside a # pixel, and finally for the pixel wholly covered by the # interpolation function. s = spec[iy] sum1 = 0. do ix = ix1, ix2 { if (!reject[ix,iy]) next p = profile[iy,ix] sk = Memr[sky+ix] dat = Memr[data+ix] - sk var = max (vmin, var0 + max (0., s * p + sk)) xz = xj - real (ix) xt = abs (xz) if (xt >= dx1) { if (xt >= 0.5) qj = ((xt - dx3) / dx4) ** 2 else qj = 1.- ((xt - dx0) / dx4) ** 2 } else if (xt <= dx0) qj = 1. else qj = dx2 - (xz / spix) ** 2 sum1 = sum1 + qj * s * dat / var } Memr[ysum+iy] = sum1 } index1 = order * jl do il = 1, order { sum1 = 0. ip = il - 1 do iy = 1, ny if (spec[iy] > 0.) sum1 = sum1 + Memr[ysum+iy] * ((real (iy) / ny) ** ip) Memr[work1+index1+il] = sum1 } } # Now accumulate matrix A. Since it is symmetric we only need to # evaluate half of it. Since it is banded we only need to evaluate # contribution if two polynomial terms can be affected by the same # pixel. ip1 = nside - 1 ip2 = order * ip1 do jl = 0, npols-1 { do kl = 0, jl { if (spix * (jl - kl - 2) > 0.) next do iy = 1, ny { if (spec[iy] <= 0.) next if (sbuf != NULL) { sky = sbuf + (iy - 1) * nx - 1 var0 = rdnoise + Memr[svar+iy-1] } # Compute left and right limits of polynomials jl+1 # and kl+1 for this value of y Evaluate sum over row # of qj[jl+1] times qj[kl+1] where qj[i] is fraction # of polynomial i which contributes to to pixel ix,jj. xj = x1[iy] - 1 + spix * (real (jl) + 0.5) xk = x1[iy] - 1 + spix * (real (kl) + 0.5) ix1 = nint (xj - spix) ix2 = nint (xk + spix) if (ix2 < ix1 || ix1 < 1 || ix2 > nx) { Memr[ysum+iy] = 0. next } s = spec[iy] s2 = s * s sum1 = 0. do ix = ix1, ix2 { if (reject[ix,iy]) { p = profile[iy,ix] sk = Memr[sky+ix] var = max (vmin, var0 + max (0., s * p + sk)) xz = xj - real (ix) xt = abs (xz) if (xt >= dx1) { if (xt >= 0.5) qj = ((xt-dx3)/dx4)**2 else qj = 1.- ((xt-dx0)/dx4)**2 } else if (xt <= dx0) qj = 1. else qj = dx2 - (xz / spix) ** 2 if (kl != jl) { xz = xk - real (ix) xt = abs (xz) if (xt >= dx1) { if (xt >= 0.5) qk = ((xt-dx3)/dx4)**2 else qk = 1.-((xt-dx0)/dx4)**2 } else if (xt <= dx0) qk = 1. else qk = dx2 - (xz / spix) ** 2 } else qk = qj sum1 = sum1 + qj * qk * s2 / var } } Memr[ysum+iy] = sum1 } do il = 1, order { do ll = 1, il { sum1 = 0. ip = il + ll - 2 do iy = 1, ny if (spec[iy] > 0.) sum1 = sum1 + Memr[ysum+iy] * ((real (iy) / ny)**ip) index1 = nside * (order*jl+il-1) + order * kl + ll Memr[work+index1] = sum1 if (ll != il) { ip = ip1 * (ll - il) index2 = index1 + ip Memr[work+index2] = sum1 } else index2 = index1 if (kl != jl) { index3 = index2 + ip2 * (kl - jl) Memr[work+index3] = sum1 if (ll != il) Memr[work+index3-ip] = sum1 } } } } } # Solve matrix equation AX = B for X. A is a real symmetric, # positive definite matrix, dimension (order*npols)**2. X is # the vector representing the coefficients fitted to the # normalized profile. Coefficients are reordered for later speed. call hfti (Memr[work+1], nside, nside, nside, Memr[work1+1], 1, 1, 0.01, ip, p, Memr[work2+1], Memr[work3+1], Memi[work4+1]) do jl = 1, order { do il = 1, npols { index1 = order * (il - 1) + jl index2 = npols * (jl - 1) + il Memr[work+index2] = Memr[work1+index1] } } # Evaluate fit and make profile positive only. do iy = 1, ny { ix1 = nint (x1[iy]) ix2 = nint (x2[iy]) xadd = x1[iy] - 1 s = 0. do ix = 1, nx { xj = real (ix) - xadd - 0.5 xk = real (ix) - xadd + 0.5 ip1 = int (xj / spix + 0.5) ip2 = int (xk / spix + 1.5) ip1 = max (1, min (ip1, npols)) ip2 = max (1, min (ip2, npols)) sum1 = 0. do jl = 0, order-1 { index1 = npols * jl sum2 = 0. do il = ip1, ip2 { xz = xadd + spix * (real (il-1) + 0.5) - real (ix) xt = abs (xz) if (xt >= dx1) { if (xt >= 0.5) qj = ((xt - dx3) / dx4) ** 2 else qj = 1. - ((xt - dx0) / dx4) ** 2 } else if (xt <= dx0) qj = 1. else qj = dx2 - (xz / spix) ** 2 sum2 = sum2 + qj * Memr[work+index1+il] } sum1 = sum1 + sum2 * ((real (iy)/ ny) ** jl) } profile[iy,ix] = max (0.d0, sum1) } } call sfree (sp) end