include include include "apertures.h" # Background fitting types define BACKGROUND "|none|average|median|minimum|fit|" define B_NONE 1 define B_AVERAGE 2 define B_MEDIAN 3 define B_MINIMUM 4 define B_FIT 5 define NSAMPLE 20 # Maximum number of background sample regions # AP_SKYEVAL -- Evaluate sky within aperture. # # The sky pixels specified by the background sample string are used to # determine a sky function at each line which is then evaluated for each # pixel in the aperture as given by the SBUF array with starting offsets # given by XS. The fitting consists of either a straight average or a # function fit using ICFIT. The sky regions are specified relative to the # aperture center. To avoid systematics due to shifting of the aperture # relative to the integer pixel positions the sky regions are linearly # interpolated. The average uses the integral of the interpolation # function within the sample region endpoints. The fit samples the # interpolation on a pixel grid with the aperture exactly centered on # a pixel. A crude sky variance is computed for each line based solely # on the variance model and the square root of the number of "pixels" # used for the fit. This variance is used to boost the variance of # the sky subtracted spectrum during variance weighting. Because sky # noise may be significant in short slits a box car smoothing may be # used giving a lower variance per pixel but bad errors near sky lines. # An unweighted aperture sum of the sky is returned in case the user # wants to save the subtracted 1D sky spectrum. procedure ap_skyeval (im, ap, dbuf, nc, nl, c1, l1, sbuf, svar, sky, nx, ny, xs, ys, nsubaps, rdnoise) pointer im # IMIO pointer pointer ap # Aperture structure pointer dbuf # Data buffer int nc, nl # Size of data buffer int c1, l1 # Origin of data buffer real sbuf[nx,ny] # Sky values real svar[ny] # Sky variances real sky[ny,nsubaps] # Extracted sky (out) int nx, ny # Size of profile array int xs[ny], ys # Origin of profile array int nsubaps # Number of subapertures real rdnoise # Readout noise in RMS data numbers. int bkg # Background type int skybox # Sky box car smoothing int i, j, ix1, ix2, nsample, nsky, nfit, ix, iy real center, xmin, xmax, a, b, c, s, avg pointer ic, cv, cv1, asi, sp, str, data, as, bs, x, y, w int apgwrd(), apgeti(), ctor() real ic_getr(), ap_cveval(), asieval(), asigrl(), amedr() errchk salloc, ic_fit begin call smark (sp) call salloc (str, SZ_LINE, TY_CHAR) # Get CL parameters and set shift and fitting function pointers. bkg = apgwrd ("background", Memc[str], SZ_LINE, BACKGROUND) skybox = apgeti ("skybox") cv = AP_CV(ap) ic = AP_IC(ap) # Set center and maximum limits relative to data buffer. # The limits are required to overlap the aperture and include # an extra point at each end for interpolation. Shifts # and boundary limits will be enforced later. i = AP_AXIS(ap) center = AP_CEN(ap,i) xmin = center + min (AP_LOW(ap,i), ic_getr (ic, "xmin")) xmax = center + max (AP_HIGH(ap,i), ic_getr (ic, "xmax")) ix1 = nint (xmin) - 1 ix2 = nint (xmax) + 1 nfit = ix2 - ix1 + 1 # Allocate memory and parse sample string. # The colons in the sample string must be changed to avoid # sexigesimal interpretation. call salloc (as, NSAMPLE, TY_REAL) call salloc (bs, NSAMPLE, TY_REAL) call ic_gstr (ic, "sample", Memc[str], SZ_LINE) for (i=str; Memc[i]!=EOS; i=i+1) if (Memc[i] == ':') Memc[i] = '$' nsample = 0 for (i=1; Memc[str+i-1]!=EOS; i=i+1) { if (ctor (Memc[str], i, a) > 0) { i = i - 1 if (Memc[str+i] == '$') { i = i + 2 if (ctor (Memc[str], i, b) > 0) { i = i - 1 Memr[as+nsample] = center + min (a, b) Memr[bs+nsample] = center + max (a, b) nsample = nsample + 1 if (nsample == NSAMPLE) break } } } } if (nsample == 0) { Memr[as] = xmin Memr[bs] = xmax nsample = 1 } if (bkg == B_MEDIAN) call salloc (y, nfit, TY_REAL) else if (bkg == B_FIT) { call salloc (x, nfit, TY_REAL) call salloc (y, nfit, TY_REAL) call salloc (w, nfit, TY_REAL) } # Initialize the image interpolator. call asiinit (asi, II_LINEAR) # Determine sky at each dispersion point. call aclrr (svar, ny) do iy = 1, ny { # Fit image interpolation function including extra points # and apply image boundary limits. i = iy + ys - 1 s = ap_cveval (cv, real (i)) ix1 = max (c1, nint (xmin + s) - 1) ix2 = min (c1+nc-1, nint (xmax + s) + 1) nfit = ix2 - ix1 + 1 if (nfit < 3) { call aclrr (sbuf[1,iy], nx) svar[iy] = 0. next } data = dbuf + (i - l1) * nc + ix1 - c1 if (bkg == B_AVERAGE || bkg == B_FIT) { iferr (call asifit (asi, Memr[data], nfit)) { call aclrr (sbuf[1,iy], nx) svar[iy] = 0. next } } # Determine background switch (bkg) { case B_AVERAGE: # The background is computed by integrating the interpolator avg = 0. nsky = 0 c = 0. for (i=0; i < nsample; i=i+1) { a = max (real (ix1), Memr[as+i] + s) - ix1 + 1 b = min (real (ix2), Memr[bs+i] + s) - ix1 + 1 if (b - a > 0.) { avg = avg + asigrl (asi, a, b) c = c + b - a nsky = nsky + nint (b) - nint(a) + 1 } } if (c > 0.) avg = avg / c call amovkr (avg, sbuf[1,iy], nx) if (nsky > 1) svar[iy] = max (0., (rdnoise + avg) / (nsky - 1)) case B_MEDIAN: # The background is computed by the median pixel avg = 0. nsky = 0 for (i=0; i < nsample; i=i+1) { a = max (real (ix1), Memr[as+i] + s) - ix1 + 1 b = min (real (ix2), Memr[bs+i] + s) - ix1 + 1 do j = nint (a), nint (b) { Memr[y+nsky] = Memr[data+j-1] nsky = nsky + 1 } } if (nsky > 0) avg = amedr (Memr[y], nsky) call amovkr (avg, sbuf[1,iy], nx) if (nsky > 1) svar[iy] = max (0., (rdnoise + avg) / (nsky - 1)) case B_MINIMUM: # The background is computed by the minimum pixel avg = MAX_REAL nsky = 0 for (i=0; i < nsample; i=i+1) { a = max (real (ix1), Memr[as+i] + s) - ix1 + 1 b = min (real (ix2), Memr[bs+i] + s) - ix1 + 1 do j = nint (a), nint (b) { avg = min (avg, Memr[data+j-1]) nsky = nsky + 1 } } if (nsky == 0) avg = 0 call amovkr (avg, sbuf[1,iy], nx) if (nsky > 1) svar[iy] = max (0., (rdnoise + avg) / (nsky - 1)) case B_FIT: # The fitting is done in a coordinate system relative to # aperture center. c = center + s a = ix1 + c - int (c) do i = 1, nfit-1 { Memr[x+i-1] = nint (1000. * (a - c)) / 1000. Memr[y+i-1] = asieval (asi, a-ix1+1) Memr[w+i-1] = 1. a = a + 1. } iferr { call ic_fit (ic, cv1, Memr[x], Memr[y], Memr[w], nfit-1, YES, YES, YES, YES) avg = 0. do i = 1, nx { a = xs[iy] + i - 1 b = ap_cveval (cv1, a - c) avg = avg + b sbuf[i,iy] = b } avg = avg / nx } then { avg = 0. call aclrr (sbuf[1,iy], nx) } nsky = 0. for (i=0; i < nsample; i=i+1) { a = max (real (ix1), Memr[as+i] + s) - ix1 + 1 b = min (real (ix2), Memr[bs+i] + s) - ix1 + 1 nsky = nsky + nint (b) - nint (a) + 1 } if (nsky > 1) svar[iy] = max (0., (rdnoise + avg) / (nsky - 1)) } } # Do box car smoothing if desired. if (skybox > 1) { ix2 = skybox ** 2 avg = 0. a = 0. iy = 1 for (i=1; i<=skybox; i=i+1) { avg = avg + sbuf[1,i] a = a + svar[i] } for (; i<=ny; i=i+1) { b = sbuf[1,iy] c = svar[iy] sbuf[1,iy] = avg / skybox svar[iy] = a / ix2 avg = avg + sbuf[1,i] - b a = a + svar[i] - c iy = iy + 1 } sbuf[1,iy] = avg / skybox svar[iy] = a / ix2 i = ny - skybox + 1 for (iy=ny; iy > ny-skybox/2; iy=iy-1) svar[iy] = svar[i] for (; i > 1; i=i-1) { svar[iy] = svar[i] iy = iy - 1 } for (; iy > 1; iy=iy-1) svar[iy] = svar[1] switch (bkg) { case B_AVERAGE, B_MEDIAN, B_MINIMUM: i = ny - skybox + 1 for (iy=ny; iy > ny-skybox/2; iy=iy-1) call amovkr (sbuf[1,i], sbuf[1,iy], nx) for (; i > 1; i=i-1) { call amovkr (sbuf[1,i], sbuf[1,iy], nx) iy = iy - 1 } for (; iy > 1; iy=iy-1) call amovkr (sbuf[1,1], sbuf[1,iy], nx) case B_FIT: i = ny - skybox + 1 for (iy=ny; iy > ny-skybox/2; iy=iy-1) sbuf[1,iy] = sbuf[1,i] for (; i > 1; i=i-1) { sbuf[1,iy] = sbuf[1,i] iy = iy - 1 } for (; iy > 1; iy=iy-1) sbuf[1,iy] = sbuf[1,1] do ix1 = 2, nx { avg = 0. iy = 1 for (i=1; i<=skybox; i=i+1) avg = avg + sbuf[ix1,i] for (; i<=ny; i=i+1) { b = sbuf[ix1,iy] sbuf[ix1,iy] = avg / skybox avg = avg + sbuf[ix1,i] - b iy = iy + 1 } sbuf[ix1,iy] = avg / skybox i = ny - skybox + 1 for (iy=ny; iy > ny-skybox/2; iy=iy-1) sbuf[ix1,iy] = sbuf[ix1,i] for (; i > 1; i=i-1) { sbuf[ix1,iy] = sbuf[ix1,i] iy = iy - 1 } for (; iy > 1; iy=iy-1) sbuf[ix1,iy] = sbuf[ix1,1] } } } # Compute the unweighted aperture sky spectrum. i = AP_AXIS(ap) a = AP_CEN(ap,i) + AP_LOW(ap,i) b = AP_CEN(ap,i) + AP_HIGH(ap,i) c = (b - a) / nsubaps do iy = 1, ny { data = dbuf + (iy + ys - 1 - l1) * nc + xs[iy] - c1 - 1 s = ap_cveval (cv, real (iy + ys - 1)) - c1 + 1 do i = 1, nsubaps { xmin = max (0.5, a + (i - 1) * c + s) + c1 - xs[iy] xmax = min (nc + 0.49, a + i * c + s) + c1 - xs[iy] if (xmin >= xmax) { sky[iy,i] = 0. next } ix1 = nint (xmin) ix2 = nint (xmax) if (ix1 == ix2) sky[iy,i] = (xmax - xmin) * sbuf[ix1,iy] else { sky[iy,i] = (ix1 - xmin + 0.5) * sbuf[ix1,iy] sky[iy,i] = sky[iy,i] + (xmax - ix2 + 0.5) * sbuf[ix2,iy] } do ix = ix1+1, ix2-1 sky[iy,i] = sky[iy,i] + sbuf[ix,iy] } } if (bkg == B_FIT) call cvfree (cv1) call asifree (asi) call sfree (sp) end