include include include include include include include include # XT_PMMAP -- Open a pixel mask READ_ONLY. # # This routine maps multiple types of mask files and designations. # It matches the mask coordinates to the reference image based on the # physical coordinate system so the mask may be of a different size. # The mask name is returned so that the task has the name pointed to by "BPM". # A null filename is allowed and returns NULL. pointer procedure xt_pmmap (pmname, refim, mname, sz_mname) char pmname[ARB] #I Pixel mask name pointer refim #I Reference image pointer char mname[ARB] #O Expanded mask name int sz_mname #O Size of expanded mask name int i, flag, nowhite() pointer sp, fname, im, ref, xt_pmmap1() bool streq() errchk xt_pmmap1 begin call smark (sp) call salloc (fname, SZ_FNAME, TY_CHAR) im = NULL i = nowhite (pmname, Memc[fname], SZ_FNAME) if (Memc[fname] == '!') { iferr (call imgstr (refim, Memc[fname+1], Memc[fname], SZ_FNAME)) Memc[fname] = EOS } else if (streq (Memc[fname], "BPM")) { iferr (call imgstr (refim, "BPM", Memc[fname], SZ_FNAME)) Memc[fname] = EOS } else if (streq (Memc[fname], "^BPM")) { flag = INVERT_MASK iferr (call imgstr (refim, "BPM", Memc[fname+1], SZ_FNAME)) Memc[fname] = EOS } if (Memc[fname] == '^') { flag = INVERT_MASK call strcpy (Memc[fname+1], Memc[fname], SZ_FNAME) } else flag = NO if (streq (Memc[fname], "EMPTY")) ref = refim else ref = NULL if (Memc[fname] != EOS) im = xt_pmmap1 (Memc[fname], ref, refim, flag, YES) call strcpy (Memc[fname], mname, sz_mname) call sfree (sp) return (im) end # XT_MAPPM -- Open a pixel mask READ_ONLY with/without matching. # # This routine maps multiple types of mask files and designations. # It may match the mask coordinates to the reference image based on the # physical coordinate system. In either case the mask is matched to be # the same size. The mask name is returned so that the task has the # name pointed to by "BPM". A null filename is allowed and returns NULL. pointer procedure xt_mappm (pmname, refim, match, mname, sz_mname) char pmname[ARB] #I Pixel mask name pointer refim #I Reference image pointer int match #I Match by physical coordinates? char mname[ARB] #O Expanded mask name int sz_mname #O Size of expanded mask name int i, flag, nowhite() pointer sp, fname, im, ref, xt_pmmap1() bool streq() errchk xt_pmmap1 begin call smark (sp) call salloc (fname, SZ_FNAME, TY_CHAR) im = NULL i = nowhite (pmname, Memc[fname], SZ_FNAME) if (Memc[fname] == '!') { iferr (call imgstr (refim, Memc[fname+1], Memc[fname], SZ_FNAME)) Memc[fname] = EOS } else if (streq (Memc[fname], "BPM")) { iferr (call imgstr (refim, "BPM", Memc[fname], SZ_FNAME)) Memc[fname] = EOS } else if (streq (Memc[fname], "^BPM")) { flag = INVERT_MASK iferr (call imgstr (refim, "BPM", Memc[fname+1], SZ_FNAME)) Memc[fname] = EOS } if (Memc[fname] == '^') { flag = INVERT_MASK call strcpy (Memc[fname+1], Memc[fname], SZ_FNAME) } else flag = NO if (streq (Memc[fname], "EMPTY")) ref = refim else ref = NULL if (Memc[fname] != EOS) im = xt_pmmap1 (Memc[fname], ref, refim, flag, match) call strcpy (Memc[fname], mname, sz_mname) call sfree (sp) return (im) end # XT_PMUNMAP -- Unmap a mask image. # Note that the imio pointer may be purely an internal pointer opened # with im_pmmapo so we need to free the pl pointer explicitly. procedure xt_pmunmap (im) pointer im #I IMIO pointer for mask pointer pm int imstati() begin pm = imstati (im, IM_PMDES) call pm_close (pm) call imseti (im, IM_PMDES, NULL) call imunmap (im) end # XT_PMMAP1 -- Open a pixel mask READ_ONLY. The input mask may be # a pixel list image, a non-pixel list image, or a text file. # Return error if the pixel mask cannot be opened. For pixel masks # or image masks match the WCS. pointer procedure xt_pmmap1 (pmname, ref, refim, flag, match) char pmname[ARB] #I Pixel mask name pointer ref #I Reference image for pixel mask pointer refim #I Reference image for image or text int flag #I Mask flag int match #I Match by physical coordinates? int imstati(), errcode() pointer im, pm pointer im_pmmap(), xt_pmimmap(), xt_pmtext(), xt_pmsection() bool streq() errchk xt_match begin im = NULL if (streq (pmname, "STDIN")) im = xt_pmtext (pmname, refim, flag) else if (pmname[1] == '[') im = xt_pmsection (pmname, refim, flag) else { ifnoerr (im = im_pmmap (pmname, READ_ONLY, ref)) { call xt_match (im, refim, match) if (flag == INVERT_MASK) { pm = imstati (im, IM_PMDES) call xt_pminvert (pm) call imseti (im, IM_PMDES, pm) } } else { switch (errcode()) { case SYS_IKIOPEN, SYS_FOPNNEXFIL, SYS_PLBADSAVEF, SYS_FOPEN: ifnoerr (im = xt_pmimmap (pmname, refim, flag)) call xt_match (im, refim, match) else { switch (errcode()) { case SYS_IKIOPEN: im = xt_pmtext (pmname, refim, flag) default: call erract (EA_ERROR) } } default: call erract (EA_ERROR) } } } return (im) end # XT_PMIMMAP -- Open a pixel mask from a non-pixel list image. # Return error if the image cannot be opened. pointer procedure xt_pmimmap (pmname, refim, flag) char pmname[ARB] #I Image name pointer refim #I Reference image pointer int flag #I Mask flag int i, ndim, npix, rop, val pointer sp, v1, v2, im_in, im_out, pm, mw, data int imstati(), imgnli() pointer immap(), pm_newmask(), im_pmmapo(), imgl1i(), mw_openim() errchk immap, mw_openim, im_pmmapo begin call smark (sp) call salloc (v1, IM_MAXDIM, TY_LONG) call salloc (v2, IM_MAXDIM, TY_LONG) call amovkl (long(1), Meml[v1], IM_MAXDIM) call amovkl (long(1), Meml[v2], IM_MAXDIM) im_in = immap (pmname, READ_ONLY, 0) pm = imstati (im_in, IM_PMDES) if (pm != NULL) return (im_in) pm = pm_newmask (im_in, 16) ndim = IM_NDIM(im_in) npix = IM_LEN(im_in,1) if (flag == INVERT_MASK) rop = PIX_NOT(PIX_SRC) else rop = PIX_SRC while (imgnli (im_in, data, Meml[v1]) != EOF) { if (flag == INVERT_MASK) { do i = 0, npix-1 { val = Memi[data+i] if (val <= 0) Memi[data+i] = 1 else Memi[data+i] = 0 } } else { do i = 0, npix-1 { val = Memi[data+i] if (val < 0) Memi[data+i] = 0 } } call pmplpi (pm, Meml[v2], Memi[data], 0, npix, rop) call amovl (Meml[v1], Meml[v2], ndim) } im_out = im_pmmapo (pm, im_in) data = imgl1i (im_out) # Force I/O to set header mw = mw_openim (im_in) # Set WCS call mw_saveim (mw, im_out) call mw_close (mw) #call imunmap (im_in) call xt_pmunmap (im_in) call sfree (sp) return (im_out) end # XT_PMTEXT -- Create a pixel mask from a text file of rectangles. # Return error if the file cannot be opened. # This routine only applies to the first 2D plane. pointer procedure xt_pmtext (pmname, refim, flag) char pmname[ARB] #I Image name pointer refim #I Reference image pointer int flag #I Mask flag int fd, nc, nl, c1, c2, l1, l2, nc1, nl1, rop pointer pm, im, mw, dummy int open(), fscan(), nscan() pointer pm_newmask(), im_pmmapo(), imgl1i(), mw_openim() errchk open, im_pmmapo begin fd = open (pmname, READ_ONLY, TEXT_FILE) pm = pm_newmask (refim, 16) nc = IM_LEN(refim,1) nl = IM_LEN(refim,2) if (flag == INVERT_MASK) call pl_box (pm, 1, 1, nc, nl, PIX_SET+PIX_VALUE(1)) while (fscan (fd) != EOF) { call gargi (c1) call gargi (c2) call gargi (l1) call gargi (l2) if (nscan() != 4) { if (nscan() == 2) { l1 = c2 c2 = c1 l2 = l1 } else next } c1 = max (1, c1) c2 = min (nc, c2) l1 = max (1, l1) l2 = min (nl, l2) nc1 = c2 - c1 + 1 nl1 = l2 - l1 + 1 if (nc1 < 1 || nl1 < 1) next # Select mask value based on shape of rectangle. if (flag == INVERT_MASK) rop = PIX_CLR else if (nc1 <= nl1) rop = PIX_SET+PIX_VALUE(2) else rop = PIX_SET+PIX_VALUE(3) # Set mask rectangle. call pm_box (pm, c1, l1, c2, l2, rop) } call close (fd) im = im_pmmapo (pm, refim) dummy = imgl1i (im) # Force I/O to set header mw = mw_openim (refim) # Set WCS call mw_saveim (mw, im) call mw_close (mw) return (im) end # XT_PMSECTION -- Create a pixel mask from an image section. # This only applies the mask to the first plane of the image. pointer procedure xt_pmsection (section, refim, flag) char section[ARB] #I Image section pointer refim #I Reference image pointer int flag #I Mask flag int i, j, ip, temp, a[2], b[2], c[2], rop, ctoi() pointer pm, im, mw, dummy, pm_newmask(), im_pmmapo(), imgl1i(), mw_openim() errchk im_pmmapo define error_ 99 begin # This is currently only for 1D and 2D images. if (IM_NDIM(refim) > 2) call error (1, "Image sections only allowed for 1D and 2D images") # Decode the section string. call amovki (1, a, 2) call amovki (1, b, 2) call amovki (1, c, 2) do i = 1, IM_NDIM(refim) b[i] = IM_LEN(refim,i) ip = 1 while (IS_WHITE(section[ip])) ip = ip + 1 if (section[ip] == '[') { ip = ip + 1 do i = 1, IM_NDIM(refim) { while (IS_WHITE(section[ip])) ip = ip + 1 # Get a:b:c. Allow notation such as "-*:c" # (or even "-:c") where the step is obviously negative. if (ctoi (section, ip, temp) > 0) { # a a[i] = temp if (section[ip] == ':') { ip = ip + 1 if (ctoi (section, ip, b[i]) == 0) # a:b goto error_ } else b[i] = a[i] } else if (section[ip] == '-') { # -* temp = a[i] a[i] = b[i] b[i] = temp ip = ip + 1 if (section[ip] == '*') ip = ip + 1 } else if (section[ip] == '*') # * ip = ip + 1 if (section[ip] == ':') { # ..:step ip = ip + 1 if (ctoi (section, ip, c[i]) == 0) goto error_ else if (c[i] == 0) goto error_ } if (a[i] > b[i] && c[i] > 0) c[i] = -c[i] while (IS_WHITE(section[ip])) ip = ip + 1 if (i < IM_NDIM(refim)) { if (section[ip] != ',') goto error_ } else { if (section[ip] != ']') goto error_ } ip = ip + 1 } } # In this case make the values be increasing only. do i = 1, IM_NDIM(refim) if (c[i] < 0) { temp = a[i] a[i] = b[i] b[i] = temp c[i] = -c[i] } # Make the mask. pm = pm_newmask (refim, 16) if (flag == INVERT_MASK) { rop = PIX_SET+PIX_VALUE(1) call pm_box (pm, 1, 1, IM_LEN(refim,1), IM_LEN(refim,2), rop) rop = PIX_CLR } else rop = PIX_SET+PIX_VALUE(1) if (c[1] == 1 && c[2] == 1) call pm_box (pm, a[1], a[2], b[1], b[2], rop) else if (c[1] == 1) for (i=a[2]; i<=b[2]; i=i+c[2]) call pm_box (pm, a[1], i, b[1], i, rop) else for (i=a[2]; i<=b[2]; i=i+c[2]) for (j=a[1]; j<=b[1]; j=j+c[1]) call pm_point (pm, j, i, rop) im = im_pmmapo (pm, refim) dummy = imgl1i (im) # Force I/O to set header mw = mw_openim (refim) # Set WCS call mw_saveim (mw, im) call mw_close (mw) return (im) error_ call error (1, "Error in image section specification") end # XT_PMINVERT -- Invert a pixel mask by changing 0 to 1 and non-zero to zero. procedure xt_pminvert (pm) pointer pm #I Pixel mask to be inverted int i, naxes, axlen[IM_MAXDIM], depth, npix, val pointer sp, v, buf, one bool pm_linenotempty() begin call pm_gsize (pm, naxes, axlen, depth) call smark (sp) call salloc (v, IM_MAXDIM, TY_LONG) call salloc (buf, axlen[1], TY_INT) call salloc (one, 6, TY_INT) npix = axlen[1] RLI_LEN(one) = 2 RLI_AXLEN(one) = npix Memi[one+3] = 1 Memi[one+4] = npix Memi[one+5] = 1 call amovkl (long(1), Meml[v], IM_MAXDIM) repeat { if (pm_linenotempty (pm, Meml[v])) { call pmglpi (pm, Meml[v], Memi[buf], 0, npix, 0) do i = 0, npix-1 { val = Memi[buf+i] if (val == 0) Memi[buf+i] = 1 else Memi[buf+i] = 0 } call pmplpi (pm, Meml[v], Memi[buf], 0, npix, PIX_SRC) } else call pmplri (pm, Meml[v], Memi[one], 0, npix, PIX_SRC) do i = 2, naxes { Meml[v+i-1] = Meml[v+i-1] + 1 if (Meml[v+i-1] <= axlen[i]) break else if (i < naxes) Meml[v+i-1] = 1 } } until (Meml[v+naxes-1] > axlen[naxes]) call sfree (sp) end # XT_MATCH -- Set the pixel mask to match the reference image. # This matches sizes and physical coordinates and allows the # original mask to be smaller or larger than the reference image. # Subsequent use of the pixel mask can then work in the logical # coordinates of the reference image. The mask values are the maximum # of the mask values which overlap each reference image pixel. # A null input returns a null output. procedure xt_match (im, refim, match) pointer im #U Pixel mask image pointer pointer refim #I Reference image pointer int match #I Match by physical coordinates? int i, j, k, l, i1, i2, j1, j2, nc, nl, ncpm, nlpm, nx, val double x1, x2, y1, y2, lt[6], lt1[6], lt2[6] long vold[IM_MAXDIM], vnew[IM_MAXDIM] pointer pm, pmnew, imnew, mw, ctx, cty, bufref, bufpm int imstati() pointer pm_open(), mw_openim(), im_pmmapo(), imgl1i(), mw_sctran() bool pm_empty(), pm_linenotempty() errchk pm_open, mw_openim, im_pmmapo begin if (im == NULL) return # Set sizes. nc = IM_LEN(refim,1) nl = IM_LEN(refim,2) ncpm = IM_LEN(im,1) nlpm = IM_LEN(im,2) # If the mask is empty and the sizes are the same then it does not # matter if the two are actually matched in physical coordinates. pm = imstati (im, IM_PMDES) if (pm_empty(pm) && nc == ncpm && nl == nlpm) return # Compute transformation between reference (logical) coordinates # and mask (physical) coordinates if desired. mw = mw_openim (im) call mw_gltermd (mw, lt, lt[5], 2) call mw_close (mw) if (match == YES) { mw = mw_openim (refim) call mw_gltermd (mw, lt2, lt2[5], 2) call mw_close (mw) } else call amovd (lt, lt2, 6) # Combine lterms. call mw_invertd (lt, lt1, 2) call mw_mmuld (lt1, lt2, lt, 2) call mw_vmuld (lt, lt[5], lt[5], 2) lt[5] = lt2[5] - lt[5] lt[6] = lt2[6] - lt[6] do i = 1, 6 lt[i] = nint (1D6 * (lt[i]-int(lt[i]))) / 1D6 + int(lt[i]) # Check for a rotation. For now don't allow any rotation. if (lt[2] != 0. || lt[3] != 0.) call error (1, "Image and mask have a relative rotation") # Check for an exact match. if (lt[1] == 1D0 && lt[4] == 1D0 && lt[5] == 0D0 && lt[6] == 0D0 && nc == ncpm && nl == nlpm) return # Set reference to mask coordinates. mw = mw_openim (im) call mw_sltermd (mw, lt, lt[5], 2) ctx = mw_sctran (mw, "logical", "physical", 1) cty = mw_sctran (mw, "logical", "physical", 2) # Create a new pixel mask of the required size and offset. # Do dummy image I/O to set the header. pmnew = pm_open (NULL) call pm_ssize (pmnew, 2, IM_LEN(refim,1), 27) imnew = im_pmmapo (pmnew, NULL) bufref = imgl1i (imnew) # Compute region of mask overlapping the reference image. call mw_ctrand (ctx, 1-0.5D0, x1, 1) call mw_ctrand (ctx, nc+0.5D0, x2, 1) i1 = max (1, nint(min(x1,x2)+1D-5)) i2 = min (ncpm, nint(max(x1,x2)-1D-5)) call mw_ctrand (cty, 1-0.5D0, y1, 1) call mw_ctrand (cty, nl+0.5D0, y2, 1) j1 = max (1, nint(min(y1,y2)+1D-5)) j2 = min (nlpm, nint(max(y1,y2)-1D-5)) # Set the new mask values to the maximum of all mask values falling # within each reference pixel in the overlap region. if (i1 <= i2 && j1 <= j2) { nx = i2 - i1 + 1 vold[1] = i1 vnew[1] = 1 # If the scales are the same then it is just a problem of # padding. In this case use range lists for speed. if (lt[1] == 1D0 && lt[4] == 1D0) { call malloc (bufpm, 3+3*nc, TY_INT) k = nint (lt[5]) l = nint (lt[6]) do j = max(1-l,j1), min(nl-l,j2) { vold[2] = j call pmglri (pm, vold, Memi[bufpm], 0, nc, PIX_SRC) if (k != 0) { bufref = bufpm do i = 2, Memi[bufpm] { bufref = bufref + 3 Memi[bufref] = Memi[bufref] + k } } vnew[2] = j + l call pmplri (pmnew, vnew, Memi[bufpm], 0, nc, PIX_SRC) } bufref = NULL # Do all the geometry and pixel size matching. This can # be slow. } else { call malloc (bufpm, nx, TY_INT) call malloc (bufref, nc, TY_INT) do j = 1, nl { call mw_ctrand (cty, j-0.5D0, y1, 1) call mw_ctrand (cty, j+0.5D0, y2, 1) j1 = max (1, nint(min(y1,y2)+1D-5)) j2 = min (nlpm, nint(max(y1,y2)-1D-5)) if (j2 < j1) next vnew[2] = j call aclri (Memi[bufref], nc) do l = j1, j2 { vold[2] = l if (!pm_linenotempty (pm, vold)) next call pmglpi (pm, vold, Memi[bufpm], 0, nx, 0) do i = 1, nc { call mw_ctrand (ctx, i-0.5D0, x1, 1) call mw_ctrand (ctx, i+0.5D0, x2, 1) i1 = max (1, nint(min(x1,x2)+1D-5)) i2 = min (ncpm, nint(max(x1,x2)-1D-5)) if (i2 < i1) next val = Memi[bufref+i-1] do k = i1-vold[1], i2-vold[1] val = max (val, Memi[bufpm+k]) Memi[bufref+i-1] = val } } call pmplpi (pmnew, vnew, Memi[bufref], 0, nc, PIX_SRC) } } call mfree (bufref, TY_INT) call mfree (bufpm, TY_INT) } call mw_close (mw) call xt_pmunmap (im) im = imnew call imseti (im, IM_PMDES, pmnew) end