/* Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. */ #include #include #include #include #include #include "sgiUtil.h" /* * SGI2GIF.C -- Read an IRAF SGI bitmap file on standard input and convert * to a GIF format image on standard outout. * * Usage: * sgi2gif.e [-params] [ [sgi_bitmap] [sgi_bitmap] ... ] * * -w N width of input bitmap and output image * -h N height of input bitmap and output image * -i invert the bitmap values before conversion * -t set background color as transparent * -root set the root rame for output file (default stdout) * -fg R G B specify foreground color * -bg R G B specify background color * * The input file name and the switches may occur in any order. The * foreground/background flags require three arguments giving the values * of the RGB components of the color as a decimal number in the range 0-255. * Enabling the transparency flag will cause a GIF 89 image to be written, * otherwise the default will be a GIF 87 format image. The transparent * color will always be the backgrund color. The bitmap may be inverted * here using the -i flag. * * Sample graphcaps for this translator might look like: * * g-gif|UNIX generic interface to multi-frame GIF file generator:\ * :DD=ugif,tmp$sgk,!{ sgidispatch sgi2gif -w $(PX) -h $(PY) \ * -bg 0 0 0 -fg 255 255 255 -root sgigif $F.[1-8] ; \ * rm $F.[1-8]; }&:MF#8:NF:tc=sgi_image_format: * * sgi_image_format|Generic raster file format specification:\ * :kf=bin$x_sgikern.e:tn=sgikern:ar#.75:\ * :xr#640:yr#480:PX#640:PY#480:XW#640:YW#480:\ * :BI:MF#1:YF:NB#8:LO#1:LS#0:XO#0:YO#0: * * The 'g-gif' entry takes one or more graphics file input and converts * each input frame to a redirected file on output called 'sgigifXXX.gif' * where the 'XXX' is frame number. * * To change the image size the graphcap :xr, :PX, :XW (X-dimension) and * :yr, :PY, :XY (Y-dimension) fields all need to be changed. The -i * or -t flags must be specified in the graphcap DD string along with the * -fg/bg flags and their arguments. */ #define NBITS_CHAR 8 /* number of bits in a char */ #define DEF_WIDTH 640 /* default image width */ #define DEF_HEIGHT 480 /* default image height */ #define DEF_BG 255 /* default background RGB */ #define DEF_FG 0 /* default foreground RGB */ #define MAX_INFILES 16 /* max number of input bitmaps */ #define SZ_FNAME 64 /* size of a filename */ typedef int code_int; typedef long int count_int; typedef unsigned char byte; static byte *pixels; static int px = DEF_WIDTH; static int py = DEF_HEIGHT; static int nrows = DEF_HEIGHT; static int ncols = DEF_WIDTH; static int transparent = 0; static int invert = 0; static int red[] = { DEF_BG, DEF_FG } ; static int green[] = { DEF_BG, DEF_FG } ; static int blue[] = { DEF_BG, DEF_FG } ; static char *infile[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static char *s_root = "sgigif_"; static int GIFNextPixel(); static void BumpPixel(), GIFEncode(), Putword(), compress(); static void output(), cl_block(), cl_hash(), char_init(); static void char_out(), flush_char(), unpack1to8(); /* MAIN -- Main entry point for the task. */ int main (int argc, char *argv[]) { FILE *fdi, *fdo; char fname[SZ_FNAME]; char *root = s_root; byte *buffer, *ip; int i, index, numin=0, len_buf; int interlace, background, bpp; /* Process the command line. */ for (i=1; i < argc; i++) { if (argv[i][0] == '-') { if (strcmp (argv[i], "-w") == 0) { ncols = px = atoi (argv[++i]); } else if (strcmp (argv[i], "-h") == 0) { nrows = py = atoi (argv[++i]); } else if (strcmp (argv[i], "-i") == 0) { invert++; } else if (strcmp (argv[i], "-root") == 0) { root = argv[++i]; } else if (strcmp (argv[i], "-t") == 0) { transparent++; } else if (strcmp (argv[i], "-bg") == 0) { if (isdigit(argv[++i][0])) red[0] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); if (isdigit(argv[++i][0])) green[0] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); if (isdigit(argv[++i][0])) blue[0] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); } else if (strcmp (argv[i], "-fg") == 0) { if (isdigit(argv[++i][0])) red[1] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); if (isdigit(argv[++i][0])) green[1] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); if (isdigit(argv[++i][0])) blue[1] = atoi (argv[i]); else fprintf (stderr, "sgi2gif: invalid -bg arg '%s'\n", argv[i]); } else { fprintf (stderr, "sgi2gif: unknown switch '%s'\n", argv[i]); } } else { /* input sgi-bitmap file specification */ if (numin < MAX_INFILES) infile[numin++] = argv[i]; } } /* Allocate space for the images. */ len_buf = px / NBITS_CHAR; buffer = (byte *) malloc (len_buf); ip = pixels = (byte *) malloc (px * (py + 1)); /* Loop over the input bitmaps, writing the converted output to * either stdout or a filename. */ for (index = 0; index == 0 || index < numin; index++) { /* Open the input file. */ fdi = (infile[index] ? fopen (infile[index], "r") : stdin); /* Open the output file. For multiple input files force each * output to a new image, when reading from stdin or only one * bitmap write to stdout if we didn't set the rootname. */ if (numin <= 1 && strcmp (root, s_root) == 0) { fdo = stdout; } else { if (numin > 1) sprintf (fname, "%s%d.gif", root, index); else sprintf (fname, "%s.gif", root); fdo = fopen (fname, "w+"); } /* Now unpack this bitmap to the output image as byte data. */ ip = pixels; while (fread (buffer, len_buf, 1, fdi)) { /* If we're on a MSB ordered machine wordswap the bitmap so * it's in the correct order for unpacking to be interpreted * as an LSB-ordered image. */ if ( ! isSwapped ()) bswap4 (buffer, buffer, len_buf); unpack1to8 ((ip+=px), buffer, px); } /* All set, write it out. */ GIFEncode (fdo, px, py, (interlace=0), (background=0), (bpp=1), red, green, blue); fflush (fdi); fflush (fdo); if (fdi != stdin) fclose (fdi); if (fdo != stdout) fclose (fdo); } /* Clean up. */ free (buffer); free (pixels); return (0); } /* UNPACK1TO8 -- Unpack each bit in the bitmap to a byte on output. */ static void unpack1to8 (byte *dest, byte *src, int len) { register int i, b; byte c = 0; for (i = 0, b = 0; i < len; i++) { if (b > 7) { b = 0; c = (invert ? ~(*src++) : (*src++) ); } *dest++ = (byte) ((c >> (b++)) & 1); } } /* GIF Writing Procedures. * * Based on GIFENCOD by David Rowley . A * Lempel-Zim compression based on "compress". Original Copyright 1990, * David Koblas, heavily modified since then.... */ #define GIFBITS 12 static int Width, Height; static int curx, cury; static long CountDown; static int Interlace; /* GIFENCODE -- GIF Image compression interface. */ static void GIFEncode (fp, GWidth, GHeight, GInterlace, Background, Bpp, Red, Green, Blue) FILE *fp; int GWidth, GHeight; int GInterlace; int Background; int Bpp; int Red[], Green[], Blue[]; { int B; int RWidth, RHeight; int LeftOfs, TopOfs; int Resolution; int ColorMapSize; int InitCodeSize; int i; Interlace = GInterlace; ColorMapSize = 1 << Bpp; RWidth = Width = GWidth; RHeight = Height = GHeight; LeftOfs = TopOfs = 0; Resolution = Bpp; /* Calculate number of bits we are expecting */ CountDown = (long)Width * (long)Height; /* The initial code size */ if (Bpp <= 1) InitCodeSize = 2; else InitCodeSize = Bpp; /* Set up the current x and y position */ curx = cury = 0; /* Write the Magic header */ fwrite ((transparent ? "GIF89a" : "GIF87a"), 1, 6, fp); /* Write out the screen width and height */ Putword (RWidth, fp); Putword (RHeight, fp); /* Indicate that there is a global colour map */ B = 0x80; /* Yes, there is a color map */ /* OR in the resolution */ B |= (Resolution - 1) << 5; /* OR in the Bits per Pixel */ B |= (Bpp - 1); /* Write it out */ fputc (B, fp); /* Write out the Background colour */ fputc (Background, fp); /* Byte of 0's (future expansion) */ fputc (0, fp); /* Write out the Global Colour Map */ for (i = 0; i < ColorMapSize; ++i) { fputc (Red[i], fp); fputc (Green[i], fp); fputc (Blue[i], fp); } /* If doing transparency, write the extension. */ if (transparent) { fputc (0x21, fp); /* graphics extension... */ fputc (0xf9, fp); /* transparency... */ fputc (0x4, fp); fputc (0x1, fp); fputc (0x0, fp); fputc (0x0, fp); fputc ((char) 0, fp); /* background color index */ fputc (0x0, fp); } /* Write an Image separator */ fputc (',', fp); /* Write the Image header */ Putword (LeftOfs, fp); Putword (TopOfs, fp); Putword (Width, fp); Putword (Height, fp); /* Write out whether or not the image is interlaced */ if (Interlace) fputc (0x40, fp); else fputc (0x00, fp); /* Write out the initial code size */ fputc (InitCodeSize, fp); /* Go and actually compress the data */ compress (InitCodeSize + 1, fp); /* Write out a Zero-length packet (to end the series) */ fputc (0, fp); /* Write the GIF file terminator */ fputc (';', fp); } /* Bump the 'curx' and 'cury' to point to the next pixel */ static void BumpPixel() { /* Bump the current X position */ ++curx; /* If at the end of a scan line, set curx back to the beginning. */ if (curx == Width) { curx = 0; ++cury; } } /* Return the next pixel from the image */ static int GIFNextPixel () { int r; if (CountDown == 0) return EOF; --CountDown; r = (int) pixels[ cury * ncols + curx ] ; BumpPixel(); return r; } /* Write out a word to the GIF file */ static void Putword (w, fp) int w; FILE*fp; { unsigned short val = w; fputc (val & 0xff, fp); fputc ((val / 256) & 0xff, fp); } /* * GIF Image compression - modified 'compress' * * Based on: compress.c - File compression ala IEEE Computer, June 1984. * * By Authors: Spencer W. Thomas, Jim McKie, Steve Davies, Ken Turkowski, * James A. Woods, Joe Orost * * Lempel-Ziv compression based on 'compress'. GIF modifications by * David Rowley (mgardi@watdcsu.waterloo.edu) */ #define HSIZE 5003 /* 80% occupancy */ static int n_bits; /* number of bits/code */ static int maxbits = GIFBITS; /* user settable max # bits/code */ static code_int maxcode; /* maximum code, given n_bits */ /* should NEVER generate this code */ static code_int maxmaxcode = (code_int) 1 << GIFBITS; #define MAXCODE(n_bits) (((code_int) 1 << (n_bits)) - 1) static count_int htab[HSIZE]; static unsigned short codetab [HSIZE]; #define HashTabOf(i) htab[i] #define CodeTabOf(i) codetab[i] /* To save much memory, we overlay the table used by compress() with those * used by decompress(). The tab_prefix table is the same size and type * as the codetab. The tab_suffix table needs 2**GIFBITS characters. We * get this from the beginning of htab. The output stack uses the rest * of htab, and contains characters. There is plenty of room for any * possible stack (stack used to be 8000 characters). */ #define tab_prefixof(i) CodeTabOf(i) #define tab_suffixof(i) ((unsigned char *)(htab))[i] static code_int free_ent = 0; /* first unused entry */ static code_int hsize = HSIZE; /* for dynamic table sizing */ /* block compression parameters -- after all codes are used up, * and compression rate changes, start over. */ static int clear_flg = 0; /* * compress stdin to stdout * * Algorithm: use open addressing double hashing (no chaining) on the * prefix code / next character combination. We do a variant of Knuth's * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime * secondary probe. Here, the modular division first probe is gives way * to a faster exclusive-or manipulation. Also do block compression with * an adaptive reset, whereby the code table is cleared when the compression * ratio decreases, but after the table fills. The variable-length output * codes are re-sized at this point, and a special CLEAR code is generated * for the decompressor. Late addition: construct the table according to * file size for noticeable speed improvement on small files. Please direct * questions about this implementation to ames!jaw. */ static FILE *g_outfile; static int g_init_bits; static int ClearCode; static int EOFCode; static int cur_bits = 0; static unsigned long cur_accum = 0; static unsigned long masks[] = { 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF }; static int a_count; /* Number of characters so far in this 'packet' */ static char accum[256]; /* Define the storage for the packet accumulator */ static void compress (init_bits, outfile) int init_bits; FILE *outfile; { register long fcode; register code_int i /* = 0 */; register int c; register code_int ent; register code_int disp; register code_int hsize_reg; register int hshift; /* Set up the globals: g_init_bits - initial number of bits * g_outfile - pointer to output file */ g_init_bits = init_bits; g_outfile = outfile; /* Set up the necessary values */ clear_flg = 0; cur_accum = 0; cur_bits = 0; maxbits = GIFBITS; maxcode = MAXCODE(n_bits = g_init_bits); ClearCode = (1 << (init_bits - 1)); EOFCode = ClearCode + 1; free_ent = ClearCode + 2; char_init(); for (i=0; i 0) goto probe; nomatch: output ((code_int) ent); ent = c; if (free_ent < maxmaxcode) { /* } */ CodeTabOf (i) = free_ent++; /* code -> hashtable */ HashTabOf (i) = fcode; } else cl_block(); } /* * Put out the final code. */ output ((code_int)ent); output ((code_int) EOFCode); } /* * Output the given code. * Inputs: * code: A n_bits-bit integer. If == -1, then EOF. This assumes * that n_bits =< (long)wordsize - 1. * Outputs: * Outputs code to the file. * Assumptions: * Chars are 8 bits long. * Algorithm: * Maintain a GIFBITS character long buffer (so that 8 codes will * fit in it exactly). Use the VAX insv instruction to insert each * code in turn. When the buffer fills up empty it and start over. */ static void output (code) code_int code; { cur_accum &= masks[ cur_bits ]; if (cur_bits > 0) cur_accum |= ((long)code << cur_bits); else cur_accum = code; cur_bits += n_bits; while (cur_bits >= 8) { char_out ((unsigned int)(cur_accum & 0xff)); cur_accum >>= 8; cur_bits -= 8; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. */ if (free_ent > maxcode || clear_flg) { if (clear_flg) { maxcode = MAXCODE (n_bits = g_init_bits); clear_flg = 0; } else { ++n_bits; if (n_bits == maxbits) maxcode = maxmaxcode; else maxcode = MAXCODE(n_bits); } } if (code == EOFCode) { /* At EOF, write the rest of the buffer. */ while (cur_bits > 0) { char_out ((unsigned int)(cur_accum & 0xff)); cur_accum >>= 8; cur_bits -= 8; } flush_char(); fflush (g_outfile); if (ferror (g_outfile)) perror ("error writing output file"); } } /* * Clear out the hash table */ static void cl_block () /* table clear for block compress */ { cl_hash ((count_int) hsize); free_ent = ClearCode + 2; clear_flg = 1; output ((code_int)ClearCode); } static void cl_hash(hsize) /* reset code table */ register count_int hsize; { register count_int *htab_p = htab + hsize; register long i; register long m1 = -1; i = hsize - 16; do { /* might use Sys V memset(3) here */ *(htab_p - 16) = m1; *(htab_p - 15) = m1; *(htab_p - 14) = m1; *(htab_p - 13) = m1; *(htab_p - 12) = m1; *(htab_p - 11) = m1; *(htab_p - 10) = m1; *(htab_p - 9) = m1; *(htab_p - 8) = m1; *(htab_p - 7) = m1; *(htab_p - 6) = m1; *(htab_p - 5) = m1; *(htab_p - 4) = m1; *(htab_p - 3) = m1; *(htab_p - 2) = m1; *(htab_p - 1) = m1; htab_p -= 16; } while ((i -= 16) >= 0); for (i += 16; i > 0; --i) *--htab_p = m1; } /* Set up the 'byte output' routine */ static void char_init() { register int i; a_count = 0; for (i=0; i<256; i++) accum[i] = 0; } /* Add a character to the end of the current packet, and if it is 254 * characters, flush the packet to disk. */ static void char_out (c) int c; { accum[ a_count++ ] = c; if (a_count >= 254) flush_char(); } /* Flush the packet to disk, and reset the accumulator */ static void flush_char() { if (a_count > 0) { fputc (a_count, g_outfile); fwrite (accum, 1, a_count, g_outfile); a_count = 0; } }