real*8 function voigt(a,v) c****************************************************************************** c This routine calculates the voigt function using the approximations c found in the *new series-astronomy and astrophysics* volume of c landolt-bornstein. c****************************************************************************** implicit real*8 (a-h,o-z) a2 = a*a v2 = v*v if(a == 0.) go to 62 if(a <= 0.2) go to 50 if(a<=1.4 .and. a+v<=3.2) go to 30 c case 1, a .gt. 1.4 or (a .gt. 0.2 and a+v .gt. 3.2) u = 1.4142136*(a2 + v2) voigt = 0.7978847*a/u*(1.0 + (3.0*v2-a2)/u**2 + (15.0*v2*v2 1 -30.0*a2*v2+3.0*a2*a2)/u**4) voigt = voigt/1.772454 return 30 u=0.979895023-0.962846325*a+0.532770573*a2-0.122727278*a*a2 31 h0 = dexp(-v2) if(v >= 2.4) go to 35 if(v >= 1.3) go to 33 c case 2, 0.2 .lt. a .le. 1.4 and a+v .le. 3.2 h1=-1.12470432-0.15516677*v+3.28867591*v2-2.34357915*v*v2 1 +0.42139162*v2*v2 go to 36 33 h1=-4.48480194+9.39456063*v-6.61487486*v2+1.98919585*v*v2 1 -0.2204165*v2*v2 go to 36 35 h1=(0.554153432+0.278711796*v-0.188325687*v2+0.042991293*v*v2 1 -0.003278278*v2*v2)/(v2 - 1.5) 36 h2 = (1.0 - 2.0*v2)*h0 if(a <= 0.2) go to 52 h1 = h1 + 1.1283790*h0 h2p = h2 h2 = h2 - h0 + 1.1283790*h1 h3 = 0.37612635*(1.0-h2p) - 0.6666667*v2*h1 + 1.1283790*h2 h4 = 0.6666667*v2*v2*h0 - 0.37612635*h1 + 1.1283790*h3 voigt = u*(h0 + h1*a + h2*a2 + h3*a*a2 + h4*a2*a2) voigt = voigt/1.772454 return c case 3, a .le. 0.2 and v .lt. 5.0 50 if(v >= 5.0) go to 60 go to 31 52 voigt = h0 + h1*a + h2*a2 voigt = voigt/1.772454 return c case 4, a .le. 0.2 and v .ge. 5.0 60 voigt = a/(1.772454*v2)*(1.0 + 1.5/v2 + 3.75/(v2*v2)) voigt = voigt/1.772454 return c case 5, a .eq. 0.0 62 voigt = exp(-v2)/1.772454 return end