diff options
author | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-03-04 21:21:30 -0500 |
---|---|---|
committer | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-03-04 21:21:30 -0500 |
commit | d54fe7c1f704a63824c5bfa0ece65245572e9b27 (patch) | |
tree | afc52015ffc2c74e0266653eecef1c8ef8ba5d91 /src/slalib/mapqk.f | |
download | calfuse-d54fe7c1f704a63824c5bfa0ece65245572e9b27.tar.gz |
Initial commit
Diffstat (limited to 'src/slalib/mapqk.f')
-rw-r--r-- | src/slalib/mapqk.f | 143 |
1 files changed, 143 insertions, 0 deletions
diff --git a/src/slalib/mapqk.f b/src/slalib/mapqk.f new file mode 100644 index 0000000..4cd0f95 --- /dev/null +++ b/src/slalib/mapqk.f @@ -0,0 +1,143 @@ + SUBROUTINE sla_MAPQK (RM, DM, PR, PD, PX, RV, AMPRMS, RA, DA) +*+ +* - - - - - - +* M A P Q K +* - - - - - - +* +* Quick mean to apparent place: transform a star RA,Dec from +* mean place to geocentric apparent place, given the +* star-independent parameters. +* +* Use of this routine is appropriate when efficiency is important +* and where many star positions, all referred to the same equator +* and equinox, are to be transformed for one epoch. The +* star-independent parameters can be obtained by calling the +* sla_MAPPA routine. +* +* If the parallax and proper motions are zero the sla_MAPQKZ +* routine can be used instead. +* +* The reference frames and timescales used are post IAU 1976. +* +* Given: +* RM,DM d mean RA,Dec (rad) +* PR,PD d proper motions: RA,Dec changes per Julian year +* PX d parallax (arcsec) +* RV d radial velocity (km/sec, +ve if receding) +* +* AMPRMS d(21) star-independent mean-to-apparent parameters: +* +* (1) time interval for proper motion (Julian years) +* (2-4) barycentric position of the Earth (AU) +* (5-7) heliocentric direction of the Earth (unit vector) +* (8) (grav rad Sun)*2/(Sun-Earth distance) +* (9-11) barycentric Earth velocity in units of c +* (12) sqrt(1-v**2) where v=modulus(ABV) +* (13-21) precession/nutation (3,3) matrix +* +* Returned: +* RA,DA d apparent RA,Dec (rad) +* +* References: +* 1984 Astronomical Almanac, pp B39-B41. +* (also Lederle & Schwan, Astron. Astrophys. 134, +* 1-6, 1984) +* +* Notes: +* +* 1) The vectors AMPRMS(2-4) and AMPRMS(5-7) are referred to +* the mean equinox and equator of epoch EQ. +* +* 2) Strictly speaking, the routine is not valid for solar-system +* sources, though the error will usually be extremely small. +* However, to prevent gross errors in the case where the +* position of the Sun is specified, the gravitational +* deflection term is restrained within about 920 arcsec of the +* centre of the Sun's disc. The term has a maximum value of +* about 1.85 arcsec at this radius, and decreases to zero as +* the centre of the disc is approached. +* +* Called: +* sla_DCS2C spherical to Cartesian +* sla_DVDV dot product +* sla_DMXV matrix x vector +* sla_DCC2S Cartesian to spherical +* sla_DRANRM normalize angle 0-2Pi +* +* P.T.Wallace Starlink 23 August 1996 +* +* Copyright (C) 1996 Rutherford Appleton Laboratory +*- + + IMPLICIT NONE + + DOUBLE PRECISION RM,DM,PR,PD,PX,RV,AMPRMS(21),RA,DA + +* Arc seconds to radians + DOUBLE PRECISION AS2R + PARAMETER (AS2R=0.484813681109535994D-5) + +* Km/s to AU/year + DOUBLE PRECISION VF + PARAMETER (VF=0.21094502D0) + + INTEGER I + + DOUBLE PRECISION PMT,GR2E,AB1,EB(3),EHN(3),ABV(3), + : Q(3),PXR,W,EM(3),P(3),PN(3),PDE,PDEP1, + : P1(3),P1DV,P1DVP1,P2(3),P3(3) + + DOUBLE PRECISION sla_DVDV,sla_DRANRM + + + +* Unpack scalar and vector parameters + PMT = AMPRMS(1) + GR2E = AMPRMS(8) + AB1 = AMPRMS(12) + DO I=1,3 + EB(I) = AMPRMS(I+1) + EHN(I) = AMPRMS(I+4) + ABV(I) = AMPRMS(I+8) + END DO + +* Spherical to x,y,z + CALL sla_DCS2C(RM,DM,Q) + +* Space motion (radians per year) + PXR = PX*AS2R + W = VF*RV*PXR + EM(1) = -PR*Q(2)-PD*COS(RM)*SIN(DM)+W*Q(1) + EM(2) = PR*Q(1)-PD*SIN(RM)*SIN(DM)+W*Q(2) + EM(3) = PD*COS(DM) +W*Q(3) + +* Geocentric direction of star (normalized) + DO I=1,3 + P(I) = Q(I)+PMT*EM(I)-PXR*EB(I) + END DO + CALL sla_DVN(P,PN,W) + +* Light deflection (restrained within the Sun's disc) + PDE = sla_DVDV(PN,EHN) + PDEP1 = PDE+1D0 + W = GR2E/MAX(PDEP1,1D-5) + DO I=1,3 + P1(I) = PN(I)+W*(EHN(I)-PDE*PN(I)) + END DO + +* Aberration + P1DV = sla_DVDV(P1,ABV) + P1DVP1 = P1DV+1D0 + W = 1D0+P1DV/(AB1+1D0) + DO I=1,3 + P2(I) = (AB1*P1(I)+W*ABV(I))/P1DVP1 + END DO + +* Precession and nutation + CALL sla_DMXV(AMPRMS(13),P2,P3) + +* Geocentric apparent RA,Dec + CALL sla_DCC2S(P3,RA,DA) + RA = sla_DRANRM(RA) + + END |