diff options
author | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-03-04 21:21:30 -0500 |
---|---|---|
committer | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-03-04 21:21:30 -0500 |
commit | d54fe7c1f704a63824c5bfa0ece65245572e9b27 (patch) | |
tree | afc52015ffc2c74e0266653eecef1c8ef8ba5d91 /src/slalib/sun67.htx/node214.html | |
download | calfuse-d54fe7c1f704a63824c5bfa0ece65245572e9b27.tar.gz |
Initial commit
Diffstat (limited to 'src/slalib/sun67.htx/node214.html')
-rw-r--r-- | src/slalib/sun67.htx/node214.html | 189 |
1 files changed, 189 insertions, 0 deletions
diff --git a/src/slalib/sun67.htx/node214.html b/src/slalib/sun67.htx/node214.html new file mode 100644 index 0000000..41b8d99 --- /dev/null +++ b/src/slalib/sun67.htx/node214.html @@ -0,0 +1,189 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> +<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997) + by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds +* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan +* with significant contributions from: + Jens Lippman, Marek Rouchal, Martin Wilck and others --> +<HTML> +<HEAD> +<TITLE>Refraction</TITLE> +<META NAME="description" CONTENT="Refraction"> +<META NAME="keywords" CONTENT="sun67"> +<META NAME="resource-type" CONTENT="document"> +<META NAME="distribution" CONTENT="global"> +<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1"> +<LINK REL="STYLESHEET" HREF="sun67.css"> +<LINK REL="next" HREF="node215.html"> +<LINK REL="previous" HREF="node213.html"> +<LINK REL="up" HREF="node213.html"> +<LINK REL="next" HREF="node215.html"> +</HEAD> +<BODY > +<BR> <HR> +<A NAME="tex2html2593" HREF="node215.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html2591" HREF="node213.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html2585" HREF="node213.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html2594" HREF="node215.html">Efficiency considerations</A> +<BR> +<B>Up:</B> <A NAME="tex2html2592" HREF="node213.html">Apparent Place to Observed Place</A> +<BR> +<B> Previous:</B> <A NAME="tex2html2586" HREF="node213.html">Apparent Place to Observed Place</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<H3><A NAME="SECTION000513100000000000000"> +Refraction</A> +</H3> +The final correction is for atmospheric refraction. +This effect, which depends on local meteorological conditions and +the effective colour of the source/detector combination, +increases the observed elevation of the source by a +significant effect even at moderate zenith distances, and near the +horizon by over <IMG WIDTH="25" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img301.gif" + ALT="$0^{\circ} + \hspace{-0.37em}.\hspace{0.02em}5$">. The amount of refraction can by +computed by calling the SLALIB routine +sla_REFRO; +however, +this requires as input the observed zenith distance, which is what +we are trying to predict. For high precision it is +therefore necessary to iterate, using the topocentric +zenith distance as the initial estimate of the +observed zenith distance. +<P> +The full +sla_REFRO refraction calculation is onerous, and for +zenith distances of less than, say, <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img164.gif" + ALT="$75^\circ$"> the following +model can be used instead: +<P> +<P ALIGN="CENTER"><IMG WIDTH="255" HEIGHT="27" + SRC="img302.gif" + ALT="\begin{displaymath} +\zeta _{vac} \approx \zeta _{obs} + + A \tan \zeta _{obs} + + B \tan ^{3}\zeta _{obs} \end{displaymath}"></P> +where <IMG WIDTH="29" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img303.gif" + ALT="$\zeta _{vac}$"> is the topocentric +zenith distance (i.e. <I>in vacuo</I>), +<IMG WIDTH="28" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img184.gif" + ALT="$\zeta_{obs}$"> is the observed +zenith distance (i.e. affected by refraction), and <I>A</I> and <I>B</I> are +constants, about <IMG WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" + SRC="img304.gif" + ALT="$60\hspace{-0.05em}^{'\hspace{-0.1em}'}$">and + <IMG WIDTH="44" HEIGHT="35" ALIGN="MIDDLE" BORDER="0" + SRC="img305.gif" + ALT="$-0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.06$"> respectively for a sea-level site. +The two constants can be calculated for a given set of conditions +by calling either +sla_REFCO or +sla_REFCOQ. +<P> +sla_REFCO works by calling +sla_REFRO for two zenith distances and fitting <I>A</I> and <I>B</I> +to match. The calculation is onerous, but delivers accurate +results whatever the conditions. +sla_REFCOQ uses a direct formulation of <I>A</I> and <I>B</I> and +is much faster; it is slightly less accurate than +sla_REFCO but more than adequate for most practical purposes. +<P> +Like the full refraction model, the two-term formulation works in the wrong +direction for our purposes, predicting +the <I>in vacuo</I> (topocentric) zenith distance +given the refracted (observed) zenith distance, +rather than <I>vice versa</I>. The obvious approach of +interchanging <IMG WIDTH="29" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img303.gif" + ALT="$\zeta _{vac}$"> and <IMG WIDTH="28" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img184.gif" + ALT="$\zeta_{obs}$"> and +reversing the signs, though approximately +correct, gives avoidable errors which are just significant in +some applications; for +example about + <IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0" + SRC="img76.gif" + ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.2$"> at <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img174.gif" + ALT="$70^\circ$"> zenith distance. A +much better result can easily be obtained, by using one Newton-Raphson +iteration as follows: +<P> +<P ALIGN="CENTER"><IMG WIDTH="313" HEIGHT="45" + SRC="img306.gif" + ALT="\begin{displaymath} +\zeta _{obs} \approx \zeta _{vac} + - \frac{A \tan \zeta _{va... + ... + {1 + ( A + 3 B \tan ^{2}\zeta _{vac} ) \sec ^{2}\zeta _{vac}}\end{displaymath}"></P> +<P> +The effect of refraction can be applied to an unrefracted +zenith distance by calling +sla_REFZ or to an unrefracted +<IMG WIDTH="58" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img50.gif" + ALT="$[\,x,y,z\,]$"> by calling +sla_REFV. +Over most of the sky these two routines deliver almost identical +results, but beyond <IMG WIDTH="56" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img209.gif" + ALT="$\zeta=83^\circ$">sla_REFV +becomes unacceptably inaccurate while +sla_REFZ +remains usable. (However +sla_REFV +is significantly faster, which may be important in some applications.) +SLALIB also provides a routine for computing the airmass, the function +sla_AIRMAS. +<P> +The refraction ``constants'' returned by +sla_REFCO and +sla_REFCOQ +are slightly affected by colour, especially at the blue end +of the spectrum. Where values for more than one +wavelength are needed, rather than calling +sla_REFCO +several times it is more efficient to call +sla_REFCO +just once, for a selected ``base'' wavelength, and then to call +sla_ATMDSP +once for each wavelength of interest. +<P> +All the SLALIB refraction routines work for radio wavelengths as well +as the optical/IR band. The radio refraction is very dependent on +humidity, and an accurate value must be supplied. There is no +wavelength dependence, however. The choice of optical/IR or +radio is made by specifying a wavelength greater than <IMG WIDTH="51" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" + SRC="img307.gif" + ALT="$100\mu m$">for the radio case. +<P> +<BR> <HR> +<A NAME="tex2html2593" HREF="node215.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html2591" HREF="node213.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html2585" HREF="node213.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html2594" HREF="node215.html">Efficiency considerations</A> +<BR> +<B>Up:</B> <A NAME="tex2html2592" HREF="node213.html">Apparent Place to Observed Place</A> +<BR> +<B> Previous:</B> <A NAME="tex2html2586" HREF="node213.html">Apparent Place to Observed Place</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<ADDRESS> +<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I> +</ADDRESS> +</BODY> +</HTML> |