aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/sun67.htx/node224.html
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-03-04 21:21:30 -0500
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-03-04 21:21:30 -0500
commitd54fe7c1f704a63824c5bfa0ece65245572e9b27 (patch)
treeafc52015ffc2c74e0266653eecef1c8ef8ba5d91 /src/slalib/sun67.htx/node224.html
downloadcalfuse-d54fe7c1f704a63824c5bfa0ece65245572e9b27.tar.gz
Initial commit
Diffstat (limited to 'src/slalib/sun67.htx/node224.html')
-rw-r--r--src/slalib/sun67.htx/node224.html617
1 files changed, 617 insertions, 0 deletions
diff --git a/src/slalib/sun67.htx/node224.html b/src/slalib/sun67.htx/node224.html
new file mode 100644
index 0000000..4cb8678
--- /dev/null
+++ b/src/slalib/sun67.htx/node224.html
@@ -0,0 +1,617 @@
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
+<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
+ by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
+* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
+* with significant contributions from:
+ Jens Lippman, Marek Rouchal, Martin Wilck and others -->
+<HTML>
+<HEAD>
+<TITLE>Ephemerides</TITLE>
+<META NAME="description" CONTENT="Ephemerides">
+<META NAME="keywords" CONTENT="sun67">
+<META NAME="resource-type" CONTENT="document">
+<META NAME="distribution" CONTENT="global">
+<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
+<LINK REL="STYLESHEET" HREF="sun67.css">
+<LINK REL="next" HREF="node225.html">
+<LINK REL="previous" HREF="node223.html">
+<LINK REL="up" HREF="node197.html">
+<LINK REL="next" HREF="node225.html">
+</HEAD>
+<BODY >
+<BR> <HR>
+<A NAME="tex2html2693" HREF="node225.html">
+<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
+<A NAME="tex2html2691" HREF="node197.html">
+<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
+<A NAME="tex2html2685" HREF="node223.html">
+<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
+ SRC="contents_motif.gif"></A>
+<BR>
+<B> Next:</B> <A NAME="tex2html2694" HREF="node225.html">Radial Velocity and Light-Time Corrections</A>
+<BR>
+<B>Up:</B> <A NAME="tex2html2692" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
+<BR>
+<B> Previous:</B> <A NAME="tex2html2686" HREF="node223.html">Geocentric Coordinates</A>
+<BR> <HR> <P>
+<P><!--End of Navigation Panel-->
+<H2><A NAME="SECTION000518000000000000000">
+Ephemerides</A>
+</H2>
+SLALIB includes routines for generating positions and
+velocities of Solar-System bodies. The accuracy objectives are
+modest, and the SLALIB facilities do not attempt
+to compete with precomputed ephemerides such as
+those provided by JPL, or with models containing
+thousands of terms. It is also worth noting
+that SLALIB's very accurate star coordinate conversion
+routines are not strictly applicable to solar-system cases,
+though they are adequate for most practical purposes.
+<P>
+Earth/Sun ephemerides can be generated using the routine
+sla_EVP,
+which predicts Earth position and velocity with respect to both the
+solar-system barycentre and the
+Sun. Maximum velocity error is 0.42&nbsp;metres per second; maximum
+heliocentric position error is 1600&nbsp;km (about <IMG WIDTH="17" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
+ SRC="img316.gif"
+ ALT="$2\hspace{-0.05em}^{'\hspace{-0.1em}'}$">), with
+barycentric position errors about 4 times worse.
+(The Sun's position as
+seen from the Earth can, of course, be obtained simply by
+reversing the signs of the Cartesian components of the
+Earth:Sun vector.)
+<P>
+Geocentric Moon ephemerides are available from
+sla_DMOON,
+which predicts the Moon's position and velocity with respect to
+the Earth's centre. Direction accuracy is usually better than
+10&nbsp;km (<IMG WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
+ SRC="img131.gif"
+ ALT="$5\hspace{-0.05em}^{'\hspace{-0.1em}'}$">) and distance accuracy a little worse.
+<P>
+Lower-precision but faster predictions for the Sun and Moon
+can be made by calling
+sla_EARTH
+and
+sla_MOON.
+Both are single precision and accept dates in the form of
+year, day-in-year and fraction of day
+(starting from a calendar date you need to call
+sla_CLYD
+or
+sla_CALYD
+to get the required year and day).
+The
+sla_EARTH
+routine returns the heliocentric position and velocity
+of the Earth's centre for the mean equator and
+equinox of date. The accuracy is better than 20,000&nbsp;km in position
+and 10&nbsp;metres per second in speed.
+The
+position and velocity of the Moon with respect to the
+Earth's centre for the mean equator and ecliptic of date
+can be obtained by calling
+sla_MOON.
+The positional accuracy is better than <IMG WIDTH="25" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
+ SRC="img82.gif"
+ ALT="$30\hspace{-0.05em}^{'\hspace{-0.1em}'}$"> in direction
+and 1000&nbsp;km in distance.
+<P>
+Approximate ephemerides for all the major planets
+can be generated by calling
+sla_PLANET
+or
+sla_RDPLAN. These routines offer arcminute accuracy (much
+better for the inner planets and for Pluto) over a span of several
+millennia (but only <IMG WIDTH="39" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
+ SRC="img317.gif"
+ ALT="$\pm100$"> years for Pluto).
+The routine
+sla_PLANET produces heliocentric position and
+velocity in the form of equatorial <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> for the
+mean equator and equinox of J2000. The vectors
+produced by
+sla_PLANET
+can be used in a variety of ways according to the
+requirements of the application concerned. The routine
+sla_RDPLAN
+uses
+sla_PLANET
+and
+sla_DMOON
+to deal with the common case of predicting
+a planet's apparent <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img3.gif"
+ ALT="$[\,\alpha,\delta\,]$"> and angular size as seen by a
+terrestrial observer.
+<P>
+Note that in predicting the position in the sky of a solar-system body
+it is necessary to allow for geocentric parallax. This correction
+is <I>essential</I> in the case of the Moon, where the observer's
+position on the Earth can affect the Moon's <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img3.gif"
+ ALT="$[\,\alpha,\delta\,]$"> by up to
+<IMG WIDTH="18" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ SRC="img318.gif"
+ ALT="$1^\circ$">. The calculation can most conveniently be done by calling
+sla_PVOBS and subtracting the resulting 6-vector from the
+one produced by
+sla_DMOON, as is demonstrated by the following example:
+<P><PRE>
+ * Demonstrate the size of the geocentric parallax correction
+ * in the case of the Moon. The test example is for the AAT,
+ * before midnight, in summer, near first quarter.
+
+ IMPLICIT NONE
+ CHARACTER NAME*40,SH,SD
+ INTEGER J,I,IHMSF(4),IDMSF(4)
+ DOUBLE PRECISION SLONGW,SLAT,H,DJUTC,FDUTC,DJUT1,DJTT,STL,
+ : RMATN(3,3),PMM(6),PMT(6),RM,DM,PVO(6),TL
+ DOUBLE PRECISION sla_DTT,sla_GMST,sla_EQEQX,sla_DRANRM
+
+ * Get AAT longitude and latitude in radians and height in metres
+ CALL sla_OBS(0,'AAT',NAME,SLONGW,SLAT,H)
+
+ * UTC (1992 January 13, 11 13 59) to MJD
+ CALL sla_CLDJ(1992,1,13,DJUTC,J)
+ CALL sla_DTF2D(11,13,59.0D0,FDUTC,J)
+ DJUTC=DJUTC+FDUTC
+
+ * UT1 (UT1-UTC value of -0.152 sec is from IERS Bulletin B)
+ DJUT1=DJUTC+(-0.152D0)/86400D0
+
+ * TT
+ DJTT=DJUTC+sla_DTT(DJUTC)/86400D0
+
+ * Local apparent sidereal time
+ STL=sla_GMST(DJUT1)-SLONGW+sla_EQEQX(DJTT)
+
+ * Geocentric position/velocity of Moon (mean of date)
+ CALL sla_DMOON(DJTT,PMM)
+
+ * Nutation to true equinox of date
+ CALL sla_NUT(DJTT,RMATN)
+ CALL sla_DMXV(RMATN,PMM,PMT)
+ CALL sla_DMXV(RMATN,PMM(4),PMT(4))
+
+ * Report geocentric HA,Dec
+ CALL sla_DCC2S(PMT,RM,DM)
+ CALL sla_DR2TF(2,sla_DRANRM(STL-RM),SH,IHMSF)
+ CALL sla_DR2AF(1,DM,SD,IDMSF)
+ WRITE (*,'(1X,'' geocentric:'',2X,A,I2.2,2I3.2,''.'',I2.2,'//
+ : '1X,A,I2.2,2I3.2,''.'',I1)')
+ : SH,IHMSF,SD,IDMSF
+
+ * Geocentric position of observer (true equator and equinox of date)
+ CALL sla_PVOBS(SLAT,H,STL,PVO)
+
+ * Place origin at observer
+ DO I=1,6
+ PMT(I)=PMT(I)-PVO(I)
+ END DO
+
+ * Allow for planetary aberration
+ TL=499.004782D0*SQRT(PMT(1)**2+PMT(2)**2+PMT(3)**2)
+ DO I=1,3
+ PMT(I)=PMT(I)-TL*PMT(I+3)
+ END DO
+
+ * Report topocentric HA,Dec
+ CALL sla_DCC2S(PMT,RM,DM)
+ CALL sla_DR2TF(2,sla_DRANRM(STL-RM),SH,IHMSF)
+ CALL sla_DR2AF(1,DM,SD,IDMSF)
+ WRITE (*,'(1X,''topocentric:'',2X,A,I2.2,2I3.2,''.'',I2.2,'//
+ : '1X,A,I2.2,2I3.2,''.'',I1)')
+ : SH,IHMSF,SD,IDMSF
+ END
+</PRE>
+<P>
+The output produced is as follows:
+<P><PRE>
+ geocentric: +03 06 55.59 +15 03 39.0
+ topocentric: +03 09 23.79 +15 40 51.5
+</PRE>
+<P>(An easier but
+less instructive method of estimating the topocentric apparent place of the
+Moon is to call the routine
+sla_RDPLAN.)
+<P>
+As an example of using
+sla_PLANET,
+the following program estimates the geocentric separation
+between Venus and Jupiter during a close conjunction
+in 2BC, which is a star-of-Bethlehem candidate:
+<P><PRE>
+ * Compute time and minimum geocentric apparent separation
+ * between Venus and Jupiter during the close conjunction of 2 BC.
+
+ IMPLICIT NONE
+
+ DOUBLE PRECISION SEPMIN,DJD0,FD,DJD,DJDM,DF,PV(6),RMATP(3,3),
+ : PVM(6),PVE(6),TL,RV,DV,RJ,DJ,SEP
+ INTEGER IHOUR,IMIN,J,I,IHMIN,IMMIN
+ DOUBLE PRECISION sla_EPJ,sla_DSEP
+
+
+ * Search for closest approach on the given day
+ DJD0=1720859.5D0
+ SEPMIN=1D10
+ DO IHOUR=20,22
+ DO IMIN=0,59
+ CALL sla_DTF2D(IHOUR,IMIN,0D0,FD,J)
+
+ * Julian date and MJD
+ DJD=DJD0+FD
+ DJDM=DJD-2400000.5D0
+
+ * Earth to Moon (mean of date)
+ CALL sla_DMOON(DJDM,PV)
+
+ * Precess Moon position to J2000
+ CALL sla_PRECL(sla_EPJ(DJDM),2000D0,RMATP)
+ CALL sla_DMXV(RMATP,PV,PVM)
+
+ * Sun to Earth-Moon Barycentre (mean J2000)
+ CALL sla_PLANET(DJDM,3,PVE,J)
+
+ * Correct from EMB to Earth
+ DO I=1,3
+ PV(I)=PVE(I)-0.012150581D0*PVM(I)
+ END DO
+
+ * Sun to Venus
+ CALL sla_PLANET(DJDM,2,PV,J)
+
+ * Earth to Venus
+ DO I=1,6
+ PV(I)=PV(I)-PVE(I)
+ END DO
+
+ * Light time to Venus (sec)
+ TL=499.004782D0*SQRT((PV(1)-PVE(1))**2+
+ : (PV(2)-PVE(2))**2+
+ : (PV(3)-PVE(3))**2)
+
+ * Extrapolate backwards in time by that much
+ DO I=1,3
+ PV(I)=PV(I)-TL*PV(I+3)
+ END DO
+
+ * To RA,Dec
+ CALL sla_DCC2S(PV,RV,DV)
+
+ * Same for Jupiter
+ CALL sla_PLANET(DJDM,5,PV,J)
+ DO I=1,6
+ PV(I)=PV(I)-PVE(I)
+ END DO
+ TL=499.004782D0*SQRT((PV(1)-PVE(1))**2+
+ : (PV(2)-PVE(2))**2+
+ : (PV(3)-PVE(3))**2)
+ DO I=1,3
+ PV(I)=PV(I)-TL*PV(I+3)
+ END DO
+ CALL sla_DCC2S(PV,RJ,DJ)
+
+ * Separation (arcsec)
+ SEP=sla_DSEP(RV,DV,RJ,DJ)
+
+ * Keep if smallest so far
+ IF (SEP.LT.SEPMIN) THEN
+ IHMIN=IHOUR
+ IMMIN=IMIN
+ SEPMIN=SEP
+ END IF
+ END DO
+ END DO
+
+ * Report
+ WRITE (*,'(1X,I2.2,'':'',I2.2,F6.1)') IHMIN,IMMIN,
+ : 206264.8062D0*SEPMIN
+
+ END
+</PRE>
+<P>
+The output produced (the Ephemeris Time on the day in question, and
+the closest approach in arcseconds) is as follows:
+<P><PRE>
+ 21:19 33.7
+</PRE>
+<P>
+For comparison, accurate predictions based on the JPL DE102 ephemeris
+give a separation about <IMG WIDTH="17" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
+ SRC="img319.gif"
+ ALT="$8\hspace{-0.05em}^{'\hspace{-0.1em}'}$"> less than
+the above estimate, occurring about half an hour earlier
+(see <I>Sky and Telescope,</I> April&nbsp;1987, p357).
+<P>
+The following program demonstrates
+sla_RDPLAN.
+<PRE>
+ * For a given date, time and geographical location, output
+ * a table of planetary positions and diameters.
+
+ IMPLICIT NONE
+ CHARACTER PNAMES(0:9)*7,B*80,S
+ INTEGER I,NP,IY,J,IM,ID,IHMSF(4),IDMSF(4)
+ DOUBLE PRECISION R2AS,FD,DJM,ELONG,PHI,RA,DEC,DIAM
+ PARAMETER (R2AS=206264.80625D0)
+ DATA PNAMES / 'Sun','Mercury','Venus','Moon','Mars','Jupiter',
+ : 'Saturn','Uranus','Neptune', 'Pluto' /
+
+
+ * Loop until 'end' typed
+ B=' '
+ DO WHILE (B.NE.'END'.AND.B.NE.'end')
+
+ * Get date, time and observer's location
+ PRINT *,'Date? (Y,M,D, Gregorian)'
+ READ (*,'(A)') B
+ IF (B.NE.'END'.AND.B.NE.'end') THEN
+ I=1
+ CALL sla_INTIN(B,I,IY,J)
+ CALL sla_INTIN(B,I,IM,J)
+ CALL sla_INTIN(B,I,ID,J)
+ PRINT *,'Time? (H,M,S, dynamical)'
+ READ (*,'(A)') B
+ I=1
+ CALL sla_DAFIN(B,I,FD,J)
+ FD=FD*2.3873241463784300365D0
+ CALL sla_CLDJ(IY,IM,ID,DJM,J)
+ DJM=DJM+FD
+ PRINT *,'Longitude? (D,M,S, east +ve)'
+ READ (*,'(A)') B
+ I=1
+ CALL sla_DAFIN(B,I,ELONG,J)
+ PRINT *,'Latitude? (D,M,S, (geodetic)'
+ READ (*,'(A)') B
+ I=1
+ CALL sla_DAFIN(B,I,PHI,J)
+
+ * Loop planet by planet
+ DO NP=0,8
+
+ * Get RA,Dec and diameter
+ CALL sla_RDPLAN(DJM,NP,ELONG,PHI,RA,DEC,DIAM)
+
+ * One line of report
+ CALL sla_DR2TF(2,RA,S,IHMSF)
+ CALL sla_DR2AF(1,DEC,S,IDMSF)
+ WRITE (*,
+ : '(1X,A,2X,3I3.2,''.'',I2.2,2X,A,I2.2,2I3.2,''.'',I1,F8.1)')
+ : PNAMES(NP),IHMSF,S,IDMSF,R2AS*DIAM
+
+ * Next planet
+ END DO
+ PRINT *,' '
+ END IF
+
+ * Next case
+ END DO
+
+ END
+</PRE>
+Entering the following data (for 1927&nbsp;June&nbsp;29 at <IMG WIDTH="49" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
+ SRC="img320.gif"
+ ALT="$5^{\rm h}\,25^{\rm m}$">&nbsp;ET
+and the position of Preston, UK.):
+<PRE>
+ 1927 6 29
+ 5 25
+ -2 42
+ 53 46
+</PRE>
+produces the following report:
+<PRE>
+ Sun 06 28 14.03 +23 17 17.5 1887.8
+ Mercury 08 08 58.62 +19 20 57.3 9.3
+ Venus 09 38 53.64 +15 35 32.9 22.8
+ Moon 06 28 18.30 +23 18 37.3 1903.9
+ Mars 09 06 49.34 +17 52 26.7 4.0
+ Jupiter 00 11 12.06 -00 10 57.5 41.1
+ Saturn 16 01 43.34 -18 36 55.9 18.2
+ Uranus 00 13 33.53 +00 39 36.0 3.5
+ Neptune 09 49 35.75 +13 38 40.8 2.2
+ Pluto 07 05 29.50 +21 25 04.2 .1
+</PRE>
+Inspection of the Sun and Moon data reveals that
+a total solar eclipse is in progress.
+<P>
+SLALIB also provides for the case where orbital elements (with respect
+to the J2000 equinox and ecliptic)
+are available. This allows predictions to be made for minor-planets and
+(if you ignore non-gravitational effects)
+comets. Furthermore, if major-planet elements for an epoch close to the date
+in question are available, more accurate predictions can be made than
+are offered by
+sla_RDPLAN and
+sla_PLANET.
+<P>
+The SLALIB planetary-prediction
+routines that work with orbital elements are
+sla_PLANTE (the orbital-elements equivalent of
+sla_RDPLAN), which predicts the topocentric <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img3.gif"
+ ALT="$[\,\alpha,\delta\,]$">, and
+sla_PLANEL (the orbital-elements equivalent of
+sla_PLANET), which predicts the heliocentric <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> with respect to the
+J2000 equinox and equator. In addition, the routine
+sla_PV2EL does the inverse of
+sla_PLANEL, transforming <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> into <I>osculating elements.</I>
+<P>
+Osculating elements describe the unperturbed 2-body orbit. This is
+a good approximation to the actual orbit for a few weeks either
+side of the specified epoch, outside which perturbations due to
+the other bodies of the Solar System lead to
+increasing errors. Given a minor planet's osculating elements for
+a particular date, predictions for a date even just
+100 days earlier or later
+are likely to be in error by several arcseconds.
+These errors can
+be reduced if new elements are generated which take account of
+the perturbations of the major planets, and this is what the routine
+sla_PERTEL does. Once
+sla_PERTEL has been called, to provide osculating elements
+close to the required date, the elements can be passed to
+sla_PLANEL or
+sla_PLANTE in the normal way. Predictions of arcsecond accuracy
+over a span of a decade or more are available using this
+technique.
+<P>
+Three different combinations of orbital elements are
+provided for, matching the usual conventions
+for major planets, minor planets and
+comets respectively. The choice is made through the
+argument <TT>JFORM</TT>:
+<BR>
+<P><TABLE CELLPADDING=3 BORDER="1">
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><TT>JFORM=1</TT></TD>
+<TD ALIGN="CENTER" NOWRAP><TT>JFORM=2</TT></TD>
+<TD ALIGN="CENTER" NOWRAP><TT>JFORM=3</TT></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>t<SUB>0</SUB></I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>t<SUB>0</SUB></I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>T</I></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>i</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>i</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>i</I></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><IMG WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ SRC="img99.gif"
+ ALT="$\Omega$"></TD>
+<TD ALIGN="CENTER" NOWRAP><IMG WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ SRC="img99.gif"
+ ALT="$\Omega$"></TD>
+<TD ALIGN="CENTER" NOWRAP><IMG WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ SRC="img99.gif"
+ ALT="$\Omega$"></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ SRC="img100.gif"
+ ALT="$\varpi$"></TD>
+<TD ALIGN="CENTER" NOWRAP><IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ SRC="img101.gif"
+ ALT="$\omega$"></TD>
+<TD ALIGN="CENTER" NOWRAP><IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ SRC="img101.gif"
+ ALT="$\omega$"></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>a</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>a</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>q</I></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>e</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>e</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>e</I></TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>L</I></TD>
+<TD ALIGN="CENTER" NOWRAP><I>M</I></TD>
+<TD ALIGN="CENTER" NOWRAP>&nbsp;</TD>
+</TR>
+<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP><I>n</I></TD>
+<TD ALIGN="CENTER" NOWRAP>&nbsp;</TD>
+<TD ALIGN="CENTER" NOWRAP>&nbsp;</TD>
+</TR>
+</TABLE>
+<BR>
+<BR>
+<BR>
+<BR>
+<BR>
+<BR>
+The symbols have the following meanings:
+<PRE><TT>
+ <I>t<SUB>0</SUB></I> epoch at which the elements were correct
+ <I>T</I> epoch of perihelion passage
+ <I>i</I> inclination of the orbit
+ <IMG WIDTH="14" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
+ SRC="img99.gif"
+ ALT="$\Omega$"> longitude of the ascending node
+ <IMG WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ SRC="img100.gif"
+ ALT="$\varpi$"> longitude of perihelion (<IMG WIDTH="81" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
+ SRC="img321.gif"
+ ALT="$\varpi = \Omega + \omega$">) <IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
+ SRC="img101.gif"
+ ALT="$\omega$"> argument of perihelion
+ <I>a</I> semi-major axis of the orbital ellipse
+ <I>q</I> perihelion distance
+ <I>e</I> orbital eccentricity
+ <I>L</I> mean longitude (<IMG WIDTH="87" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
+ SRC="img322.gif"
+ ALT="$L = \varpi + M$">) <I>M</I> mean anomaly
+ <I>n</I> mean motion
+</TT></PRE>
+<P>
+The mean motion, <I>n</I>, tells sla_PLANEL the mass of the planet.
+If it is not available, it should be claculated
+from <I>n<SUP>2</SUP></I> <I>a<SUP>3</SUP></I> = <I>k<SUP>2</SUP></I> (1+<I>m</I>), where <I>k</I> = 0.01720209895 and
+m is the mass of the planet (<IMG WIDTH="59" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
+ SRC="img323.gif"
+ ALT="$M_\odot = 1$">); <I>a</I> is in AU.
+<P>
+Conventional elements are not the only way of specifying an orbit.
+The <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> state vector is an equally valid specification,
+and the so-called <I>method of universal variables</I> allows
+orbital calculations to be made directly, bypassing angular
+quantities and avoiding Kepler's Equation. The universal-variables
+approach has various advantages, including better handling of
+near-parabolic cases and greater efficiency.
+SLALIB uses universal variables for its internal
+calculations and also offers a number of routines which
+applications can call.
+<P>
+The universal elements are the <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> and its epoch, plus the mass
+of the body. The SLALIB routines supplement these elements with
+certain redundant values in order to
+avoid unnecessary recomputation when the elements are next used.
+<P>
+The routines
+sla_EL2UE and
+sla_UE2EL transform conventional elements into the
+universal form and <I>vice versa.</I>
+The routine
+sla_PV2UE takes an <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> and forms the set of universal
+elements;
+sla_UE2PV takes a set of universal elements and predicts the <IMG WIDTH="106" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
+ SRC="img51.gif"
+ ALT="$[\,x,y,z,\dot{x},\dot{y},\dot{z}\,]$"> for a specified epoch.
+The routine
+sla_PERTUE provides updated universal elements,
+taking into account perturbations from the major planets.
+<P>
+<BR> <HR>
+<A NAME="tex2html2693" HREF="node225.html">
+<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
+<A NAME="tex2html2691" HREF="node197.html">
+<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
+<A NAME="tex2html2685" HREF="node223.html">
+<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
+ SRC="contents_motif.gif"></A>
+<BR>
+<B> Next:</B> <A NAME="tex2html2694" HREF="node225.html">Radial Velocity and Light-Time Corrections</A>
+<BR>
+<B>Up:</B> <A NAME="tex2html2692" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
+<BR>
+<B> Previous:</B> <A NAME="tex2html2686" HREF="node223.html">Geocentric Coordinates</A>
+<BR> <HR> <P>
+<P><!--End of Navigation Panel-->
+<ADDRESS>
+<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
+</ADDRESS>
+</BODY>
+</HTML>