aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/dtpv2c.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/slalib/dtpv2c.f')
-rw-r--r--src/slalib/dtpv2c.f83
1 files changed, 83 insertions, 0 deletions
diff --git a/src/slalib/dtpv2c.f b/src/slalib/dtpv2c.f
new file mode 100644
index 0000000..6ea2c29
--- /dev/null
+++ b/src/slalib/dtpv2c.f
@@ -0,0 +1,83 @@
+ SUBROUTINE sla_DTPV2C (XI, ETA, V, V01, V02, N)
+*+
+* - - - - - - -
+* D T P V 2 C
+* - - - - - - -
+*
+* Given the tangent-plane coordinates of a star and its direction
+* cosines, determine the direction cosines of the tangent-point.
+*
+* (double precision)
+*
+* Given:
+* XI,ETA d tangent plane coordinates of star
+* V d(3) direction cosines of star
+*
+* Returned:
+* V01 d(3) direction cosines of tangent point, solution 1
+* V02 d(3) direction cosines of tangent point, solution 2
+* N i number of solutions:
+* 0 = no solutions returned (note 2)
+* 1 = only the first solution is useful (note 3)
+* 2 = both solutions are useful (note 3)
+*
+* Notes:
+*
+* 1 The vector V must be of unit length or the result will be wrong.
+*
+* 2 Cases where there is no solution can only arise near the poles.
+* For example, it is clearly impossible for a star at the pole
+* itself to have a non-zero XI value, and hence it is meaningless
+* to ask where the tangent point would have to be.
+*
+* 3 Also near the poles, cases can arise where there are two useful
+* solutions. The argument N indicates whether the second of the
+* two solutions returned is useful. N=1 indicates only one useful
+* solution, the usual case; under these circumstances, the second
+* solution can be regarded as valid if the vector V02 is interpreted
+* as the "over-the-pole" case.
+*
+* 4 This routine is the Cartesian equivalent of the routine sla_DTPS2C.
+*
+* P.T.Wallace Starlink 5 June 1995
+*
+* Copyright (C) 1995 Rutherford Appleton Laboratory
+*-
+
+ IMPLICIT NONE
+
+ DOUBLE PRECISION XI,ETA,V(3),V01(3),V02(3)
+ INTEGER N
+
+ DOUBLE PRECISION X,Y,Z,RXY2,XI2,ETA2P1,SDF,R2,R,C
+
+
+ X=V(1)
+ Y=V(2)
+ Z=V(3)
+ RXY2=X*X+Y*Y
+ XI2=XI*XI
+ ETA2P1=ETA*ETA+1D0
+ SDF=Z*SQRT(XI2+ETA2P1)
+ R2=RXY2*ETA2P1-Z*Z*XI2
+ IF (R2.GT.0D0) THEN
+ R=SQRT(R2)
+ C=(SDF*ETA+R)/(ETA2P1*SQRT(RXY2*(R2+XI2)))
+ V01(1)=C*(X*R+Y*XI)
+ V01(2)=C*(Y*R-X*XI)
+ V01(3)=(SDF-ETA*R)/ETA2P1
+ R=-R
+ C=(SDF*ETA+R)/(ETA2P1*SQRT(RXY2*(R2+XI2)))
+ V02(1)=C*(X*R+Y*XI)
+ V02(2)=C*(Y*R-X*XI)
+ V02(3)=(SDF-ETA*R)/ETA2P1
+ IF (ABS(SDF).LT.1D0) THEN
+ N=1
+ ELSE
+ N=2
+ END IF
+ ELSE
+ N=0
+ END IF
+
+ END