aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/evp.f
diff options
context:
space:
mode:
Diffstat (limited to 'src/slalib/evp.f')
-rw-r--r--src/slalib/evp.f441
1 files changed, 441 insertions, 0 deletions
diff --git a/src/slalib/evp.f b/src/slalib/evp.f
new file mode 100644
index 0000000..b295a12
--- /dev/null
+++ b/src/slalib/evp.f
@@ -0,0 +1,441 @@
+ SUBROUTINE sla_EVP (DATE, DEQX, DVB, DPB, DVH, DPH)
+*+
+* - - - -
+* E V P
+* - - - -
+*
+* Barycentric and heliocentric velocity and position of the Earth
+*
+* All arguments are double precision
+*
+* Given:
+*
+* DATE TDB (loosely ET) as a Modified Julian Date
+* (JD-2400000.5)
+*
+* DEQX Julian Epoch (e.g. 2000.0D0) of mean equator and
+* equinox of the vectors returned. If DEQX .LE. 0D0,
+* all vectors are referred to the mean equator and
+* equinox (FK5) of epoch DATE.
+*
+* Returned (all 3D Cartesian vectors):
+*
+* DVB,DPB barycentric velocity, position
+*
+* DVH,DPH heliocentric velocity, position
+*
+* (Units are AU/s for velocity and AU for position)
+*
+* Called: sla_EPJ, sla_PREC
+*
+* Accuracy:
+*
+* The maximum deviations from the JPL DE96 ephemeris are as
+* follows:
+*
+* barycentric velocity 0.42 m/s
+* barycentric position 6900 km
+*
+* heliocentric velocity 0.42 m/s
+* heliocentric position 1600 km
+*
+* This routine is adapted from the BARVEL and BARCOR
+* subroutines of P.Stumpff, which are described in
+* Astron. Astrophys. Suppl. Ser. 41, 1-8 (1980). Most of the
+* changes are merely cosmetic and do not affect the results at
+* all. However, some adjustments have been made so as to give
+* results that refer to the new (IAU 1976 'FK5') equinox
+* and precession, although the differences these changes make
+* relative to the results from Stumpff's original 'FK4' version
+* are smaller than the inherent accuracy of the algorithm. One
+* minor shortcoming in the original routines that has NOT been
+* corrected is that better numerical accuracy could be achieved
+* if the various polynomial evaluations were nested. Note also
+* that one of Stumpff's precession constants differs by 0.001 arcsec
+* from the value given in the Explanatory Supplement to the A.E.
+*
+* P.T.Wallace Starlink 21 March 1999
+*
+* Copyright (C) 1999 Rutherford Appleton Laboratory
+*-
+
+ IMPLICIT NONE
+
+ DOUBLE PRECISION DATE,DEQX,DVB(3),DPB(3),DVH(3),DPH(3)
+
+ INTEGER IDEQ,I,J,K
+
+ REAL CC2PI,CCSEC3,CCSGD,CCKM,CCMLD,CCFDI,CCIM,T,TSQ,A,PERTL,
+ : PERTLD,PERTR,PERTRD,COSA,SINA,ESQ,E,PARAM,TWOE,TWOG,G,
+ : PHI,F,SINF,COSF,PHID,PSID,PERTP,PERTPD,TL,SINLM,COSLM,
+ : SIGMA,B,PLON,POMG,PECC,FLATM,FLAT
+
+ DOUBLE PRECISION DC2PI,DS2R,DCSLD,DC1MME,DT,DTSQ,DLOCAL,DML,
+ : DEPS,DPARAM,DPSI,D1PDRO,DRD,DRLD,DTL,DSINLS,
+ : DCOSLS,DXHD,DYHD,DZHD,DXBD,DYBD,DZBD,DCOSEP,
+ : DSINEP,DYAHD,DZAHD,DYABD,DZABD,DR,
+ : DXH,DYH,DZH,DXB,DYB,DZB,DYAH,DZAH,DYAB,
+ : DZAB,DEPJ,DEQCOR,B1950
+
+ REAL SN(4),CCSEL(3,17),CCAMPS(5,15),CCSEC(3,4),CCAMPM(4,3),
+ : CCPAMV(4),CCPAM(4),FORBEL(7),SORBEL(17),SINLP(4),COSLP(4)
+ EQUIVALENCE (SORBEL(1),E),(FORBEL(1),G)
+
+ DOUBLE PRECISION DCFEL(3,8),DCEPS(3),DCARGS(2,15),DCARGM(2,3),
+ : DPREMA(3,3),W,VW(3)
+
+ DOUBLE PRECISION sla_EPJ
+
+ PARAMETER (DC2PI=6.2831853071796D0,CC2PI=6.283185)
+ PARAMETER (DS2R=0.7272205216643D-4)
+ PARAMETER (B1950=1949.9997904423D0)
+
+*
+* Constants DCFEL(I,K) of fast changing elements
+* I=1 I=2 I=3
+ DATA DCFEL/ 1.7400353D+00, 6.2833195099091D+02, 5.2796D-06,
+ : 6.2565836D+00, 6.2830194572674D+02,-2.6180D-06,
+ : 4.7199666D+00, 8.3997091449254D+03,-1.9780D-05,
+ : 1.9636505D-01, 8.4334662911720D+03,-5.6044D-05,
+ : 4.1547339D+00, 5.2993466764997D+01, 5.8845D-06,
+ : 4.6524223D+00, 2.1354275911213D+01, 5.6797D-06,
+ : 4.2620486D+00, 7.5025342197656D+00, 5.5317D-06,
+ : 1.4740694D+00, 3.8377331909193D+00, 5.6093D-06/
+
+*
+* Constants DCEPS and CCSEL(I,K) of slowly changing elements
+* I=1 I=2 I=3
+ DATA DCEPS/ 4.093198D-01,-2.271110D-04,-2.860401D-08 /
+ DATA CCSEL/ 1.675104E-02,-4.179579E-05,-1.260516E-07,
+ : 2.220221E-01, 2.809917E-02, 1.852532E-05,
+ : 1.589963E+00, 3.418075E-02, 1.430200E-05,
+ : 2.994089E+00, 2.590824E-02, 4.155840E-06,
+ : 8.155457E-01, 2.486352E-02, 6.836840E-06,
+ : 1.735614E+00, 1.763719E-02, 6.370440E-06,
+ : 1.968564E+00, 1.524020E-02,-2.517152E-06,
+ : 1.282417E+00, 8.703393E-03, 2.289292E-05,
+ : 2.280820E+00, 1.918010E-02, 4.484520E-06,
+ : 4.833473E-02, 1.641773E-04,-4.654200E-07,
+ : 5.589232E-02,-3.455092E-04,-7.388560E-07,
+ : 4.634443E-02,-2.658234E-05, 7.757000E-08,
+ : 8.997041E-03, 6.329728E-06,-1.939256E-09,
+ : 2.284178E-02,-9.941590E-05, 6.787400E-08,
+ : 4.350267E-02,-6.839749E-05,-2.714956E-07,
+ : 1.348204E-02, 1.091504E-05, 6.903760E-07,
+ : 3.106570E-02,-1.665665E-04,-1.590188E-07/
+
+*
+* Constants of the arguments of the short-period perturbations
+* by the planets: DCARGS(I,K)
+* I=1 I=2
+ DATA DCARGS/ 5.0974222D+00,-7.8604195454652D+02,
+ : 3.9584962D+00,-5.7533848094674D+02,
+ : 1.6338070D+00,-1.1506769618935D+03,
+ : 2.5487111D+00,-3.9302097727326D+02,
+ : 4.9255514D+00,-5.8849265665348D+02,
+ : 1.3363463D+00,-5.5076098609303D+02,
+ : 1.6072053D+00,-5.2237501616674D+02,
+ : 1.3629480D+00,-1.1790629318198D+03,
+ : 5.5657014D+00,-1.0977134971135D+03,
+ : 5.0708205D+00,-1.5774000881978D+02,
+ : 3.9318944D+00, 5.2963464780000D+01,
+ : 4.8989497D+00, 3.9809289073258D+01,
+ : 1.3097446D+00, 7.7540959633708D+01,
+ : 3.5147141D+00, 7.9618578146517D+01,
+ : 3.5413158D+00,-5.4868336758022D+02/
+
+*
+* Amplitudes CCAMPS(N,K) of the short-period perturbations
+* N=1 N=2 N=3 N=4 N=5
+ DATA CCAMPS/
+ : -2.279594E-5, 1.407414E-5, 8.273188E-6, 1.340565E-5,-2.490817E-7,
+ : -3.494537E-5, 2.860401E-7, 1.289448E-7, 1.627237E-5,-1.823138E-7,
+ : 6.593466E-7, 1.322572E-5, 9.258695E-6,-4.674248E-7,-3.646275E-7,
+ : 1.140767E-5,-2.049792E-5,-4.747930E-6,-2.638763E-6,-1.245408E-7,
+ : 9.516893E-6,-2.748894E-6,-1.319381E-6,-4.549908E-6,-1.864821E-7,
+ : 7.310990E-6,-1.924710E-6,-8.772849E-7,-3.334143E-6,-1.745256E-7,
+ : -2.603449E-6, 7.359472E-6, 3.168357E-6, 1.119056E-6,-1.655307E-7,
+ : -3.228859E-6, 1.308997E-7, 1.013137E-7, 2.403899E-6,-3.736225E-7,
+ : 3.442177E-7, 2.671323E-6, 1.832858E-6,-2.394688E-7,-3.478444E-7,
+ : 8.702406E-6,-8.421214E-6,-1.372341E-6,-1.455234E-6,-4.998479E-8,
+ : -1.488378E-6,-1.251789E-5, 5.226868E-7,-2.049301E-7, 0.0E0,
+ : -8.043059E-6,-2.991300E-6, 1.473654E-7,-3.154542E-7, 0.0E0,
+ : 3.699128E-6,-3.316126E-6, 2.901257E-7, 3.407826E-7, 0.0E0,
+ : 2.550120E-6,-1.241123E-6, 9.901116E-8, 2.210482E-7, 0.0E0,
+ : -6.351059E-7, 2.341650E-6, 1.061492E-6, 2.878231E-7, 0.0E0/
+
+*
+* Constants of the secular perturbations in longitude
+* CCSEC3 and CCSEC(N,K)
+* N=1 N=2 N=3
+ DATA CCSEC3/-7.757020E-08/,
+ : CCSEC/ 1.289600E-06, 5.550147E-01, 2.076942E+00,
+ : 3.102810E-05, 4.035027E+00, 3.525565E-01,
+ : 9.124190E-06, 9.990265E-01, 2.622706E+00,
+ : 9.793240E-07, 5.508259E+00, 1.559103E+01/
+
+* Sidereal rate DCSLD in longitude, rate CCSGD in mean anomaly
+ DATA DCSLD/1.990987D-07/,
+ : CCSGD/1.990969E-07/
+
+* Some constants used in the calculation of the lunar contribution
+ DATA CCKM/3.122140E-05/,
+ : CCMLD/2.661699E-06/,
+ : CCFDI/2.399485E-07/
+
+*
+* Constants DCARGM(I,K) of the arguments of the perturbations
+* of the motion of the Moon
+* I=1 I=2
+ DATA DCARGM/ 5.1679830D+00, 8.3286911095275D+03,
+ : 5.4913150D+00,-7.2140632838100D+03,
+ : 5.9598530D+00, 1.5542754389685D+04/
+
+*
+* Amplitudes CCAMPM(N,K) of the perturbations of the Moon
+* N=1 N=2 N=3 N=4
+ DATA CCAMPM/
+ : 1.097594E-01, 2.896773E-07, 5.450474E-02, 1.438491E-07,
+ : -2.223581E-02, 5.083103E-08, 1.002548E-02,-2.291823E-08,
+ : 1.148966E-02, 5.658888E-08, 8.249439E-03, 4.063015E-08/
+
+*
+* CCPAMV(K)=A*M*DL/DT (planets), DC1MME=1-MASS(Earth+Moon)
+ DATA CCPAMV/8.326827E-11,1.843484E-11,1.988712E-12,1.881276E-12/
+ DATA DC1MME/0.99999696D0/
+
+* CCPAM(K)=A*M(planets), CCIM=INCLINATION(Moon)
+ DATA CCPAM/4.960906E-3,2.727436E-3,8.392311E-4,1.556861E-3/
+ DATA CCIM/8.978749E-2/
+
+
+
+
+*
+* EXECUTION
+* ---------
+
+* Control parameter IDEQ, and time arguments
+ IDEQ = 0
+ IF (DEQX.GT.0D0) IDEQ=1
+ DT = (DATE-15019.5D0)/36525D0
+ T = REAL(DT)
+ DTSQ = DT*DT
+ TSQ = REAL(DTSQ)
+
+* Values of all elements for the instant DATE
+ DO K=1,8
+ DLOCAL = MOD(DCFEL(1,K)+DT*DCFEL(2,K)+DTSQ*DCFEL(3,K), DC2PI)
+ IF (K.EQ.1) THEN
+ DML = DLOCAL
+ ELSE
+ FORBEL(K-1) = REAL(DLOCAL)
+ END IF
+ END DO
+ DEPS = MOD(DCEPS(1)+DT*DCEPS(2)+DTSQ*DCEPS(3), DC2PI)
+ DO K=1,17
+ SORBEL(K) = MOD(CCSEL(1,K)+T*CCSEL(2,K)+TSQ*CCSEL(3,K),
+ : CC2PI)
+ END DO
+
+* Secular perturbations in longitude
+ DO K=1,4
+ A = MOD(CCSEC(2,K)+T*CCSEC(3,K), CC2PI)
+ SN(K) = SIN(A)
+ END DO
+
+* Periodic perturbations of the EMB (Earth-Moon barycentre)
+ PERTL = CCSEC(1,1) *SN(1) +CCSEC(1,2)*SN(2)+
+ : (CCSEC(1,3)+T*CCSEC3)*SN(3) +CCSEC(1,4)*SN(4)
+ PERTLD = 0.0
+ PERTR = 0.0
+ PERTRD = 0.0
+ DO K=1,15
+ A = SNGL(MOD(DCARGS(1,K)+DT*DCARGS(2,K), DC2PI))
+ COSA = COS(A)
+ SINA = SIN(A)
+ PERTL = PERTL + CCAMPS(1,K)*COSA+CCAMPS(2,K)*SINA
+ PERTR = PERTR + CCAMPS(3,K)*COSA+CCAMPS(4,K)*SINA
+ IF (K.LT.11) THEN
+ PERTLD = PERTLD+
+ : (CCAMPS(2,K)*COSA-CCAMPS(1,K)*SINA)*CCAMPS(5,K)
+ PERTRD = PERTRD+
+ : (CCAMPS(4,K)*COSA-CCAMPS(3,K)*SINA)*CCAMPS(5,K)
+ END IF
+ END DO
+
+* Elliptic part of the motion of the EMB
+ ESQ = E*E
+ DPARAM = 1D0-DBLE(ESQ)
+ PARAM = REAL(DPARAM)
+ TWOE = E+E
+ TWOG = G+G
+ PHI = TWOE*((1.0-ESQ*0.125)*SIN(G)+E*0.625*SIN(TWOG)
+ : +ESQ*0.54166667*SIN(G+TWOG) )
+ F = G+PHI
+ SINF = SIN(F)
+ COSF = COS(F)
+ DPSI = DPARAM/(1D0+DBLE(E*COSF))
+ PHID = TWOE*CCSGD*((1.0+ESQ*1.5)*COSF+E*(1.25-SINF*SINF*0.5))
+ PSID = CCSGD*E*SINF/SQRT(PARAM)
+
+* Perturbed heliocentric motion of the EMB
+ D1PDRO = 1D0+DBLE(PERTR)
+ DRD = D1PDRO*(DBLE(PSID)+DPSI*DBLE(PERTRD))
+ DRLD = D1PDRO*DPSI*(DCSLD+DBLE(PHID)+DBLE(PERTLD))
+ DTL = MOD(DML+DBLE(PHI)+DBLE(PERTL), DC2PI)
+ DSINLS = SIN(DTL)
+ DCOSLS = COS(DTL)
+ DXHD = DRD*DCOSLS-DRLD*DSINLS
+ DYHD = DRD*DSINLS+DRLD*DCOSLS
+
+* Influence of eccentricity, evection and variation on the
+* geocentric motion of the Moon
+ PERTL = 0.0
+ PERTLD = 0.0
+ PERTP = 0.0
+ PERTPD = 0.0
+ DO K=1,3
+ A = SNGL(MOD(DCARGM(1,K)+DT*DCARGM(2,K), DC2PI))
+ SINA = SIN(A)
+ COSA = COS(A)
+ PERTL = PERTL +CCAMPM(1,K)*SINA
+ PERTLD = PERTLD+CCAMPM(2,K)*COSA
+ PERTP = PERTP +CCAMPM(3,K)*COSA
+ PERTPD = PERTPD-CCAMPM(4,K)*SINA
+ END DO
+
+* Heliocentric motion of the Earth
+ TL = FORBEL(2)+PERTL
+ SINLM = SIN(TL)
+ COSLM = COS(TL)
+ SIGMA = CCKM/(1.0+PERTP)
+ A = SIGMA*(CCMLD+PERTLD)
+ B = SIGMA*PERTPD
+ DXHD = DXHD+DBLE(A*SINLM)+DBLE(B*COSLM)
+ DYHD = DYHD-DBLE(A*COSLM)+DBLE(B*SINLM)
+ DZHD = -DBLE(SIGMA*CCFDI*COS(FORBEL(3)))
+
+* Barycentric motion of the Earth
+ DXBD = DXHD*DC1MME
+ DYBD = DYHD*DC1MME
+ DZBD = DZHD*DC1MME
+ DO K=1,4
+ PLON = FORBEL(K+3)
+ POMG = SORBEL(K+1)
+ PECC = SORBEL(K+9)
+ TL = MOD(PLON+2.0*PECC*SIN(PLON-POMG), CC2PI)
+ SINLP(K) = SIN(TL)
+ COSLP(K) = COS(TL)
+ DXBD = DXBD+DBLE(CCPAMV(K)*(SINLP(K)+PECC*SIN(POMG)))
+ DYBD = DYBD-DBLE(CCPAMV(K)*(COSLP(K)+PECC*COS(POMG)))
+ DZBD = DZBD-DBLE(CCPAMV(K)*SORBEL(K+13)*COS(PLON-SORBEL(K+5)))
+ END DO
+
+* Transition to mean equator of date
+ DCOSEP = COS(DEPS)
+ DSINEP = SIN(DEPS)
+ DYAHD = DCOSEP*DYHD-DSINEP*DZHD
+ DZAHD = DSINEP*DYHD+DCOSEP*DZHD
+ DYABD = DCOSEP*DYBD-DSINEP*DZBD
+ DZABD = DSINEP*DYBD+DCOSEP*DZBD
+
+* Heliocentric coordinates of the Earth
+ DR = DPSI*D1PDRO
+ FLATM = CCIM*SIN(FORBEL(3))
+ A = SIGMA*COS(FLATM)
+ DXH = DR*DCOSLS-DBLE(A*COSLM)
+ DYH = DR*DSINLS-DBLE(A*SINLM)
+ DZH = -DBLE(SIGMA*SIN(FLATM))
+
+* Barycentric coordinates of the Earth
+ DXB = DXH*DC1MME
+ DYB = DYH*DC1MME
+ DZB = DZH*DC1MME
+ DO K=1,4
+ FLAT = SORBEL(K+13)*SIN(FORBEL(K+3)-SORBEL(K+5))
+ A = CCPAM(K)*(1.0-SORBEL(K+9)*COS(FORBEL(K+3)-SORBEL(K+1)))
+ B = A*COS(FLAT)
+ DXB = DXB-DBLE(B*COSLP(K))
+ DYB = DYB-DBLE(B*SINLP(K))
+ DZB = DZB-DBLE(A*SIN(FLAT))
+ END DO
+
+* Transition to mean equator of date
+ DYAH = DCOSEP*DYH-DSINEP*DZH
+ DZAH = DSINEP*DYH+DCOSEP*DZH
+ DYAB = DCOSEP*DYB-DSINEP*DZB
+ DZAB = DSINEP*DYB+DCOSEP*DZB
+
+* Copy result components into vectors, correcting for FK4 equinox
+ DEPJ=sla_EPJ(DATE)
+ DEQCOR = DS2R*(0.035D0+0.00085D0*(DEPJ-B1950))
+ DVH(1) = DXHD-DEQCOR*DYAHD
+ DVH(2) = DYAHD+DEQCOR*DXHD
+ DVH(3) = DZAHD
+ DVB(1) = DXBD-DEQCOR*DYABD
+ DVB(2) = DYABD+DEQCOR*DXBD
+ DVB(3) = DZABD
+ DPH(1) = DXH-DEQCOR*DYAH
+ DPH(2) = DYAH+DEQCOR*DXH
+ DPH(3) = DZAH
+ DPB(1) = DXB-DEQCOR*DYAB
+ DPB(2) = DYAB+DEQCOR*DXB
+ DPB(3) = DZAB
+
+* Was precession to another equinox requested?
+ IF (IDEQ.NE.0) THEN
+
+* Yes: compute precession matrix from MJD DATE to Julian epoch DEQX
+ CALL sla_PREC(DEPJ,DEQX,DPREMA)
+
+* Rotate DVH
+ DO J=1,3
+ W=0D0
+ DO I=1,3
+ W=W+DPREMA(J,I)*DVH(I)
+ END DO
+ VW(J)=W
+ END DO
+ DO J=1,3
+ DVH(J)=VW(J)
+ END DO
+
+* Rotate DVB
+ DO J=1,3
+ W=0D0
+ DO I=1,3
+ W=W+DPREMA(J,I)*DVB(I)
+ END DO
+ VW(J)=W
+ END DO
+ DO J=1,3
+ DVB(J)=VW(J)
+ END DO
+
+* Rotate DPH
+ DO J=1,3
+ W=0D0
+ DO I=1,3
+ W=W+DPREMA(J,I)*DPH(I)
+ END DO
+ VW(J)=W
+ END DO
+ DO J=1,3
+ DPH(J)=VW(J)
+ END DO
+
+* Rotate DPB
+ DO J=1,3
+ W=0D0
+ DO I=1,3
+ W=W+DPREMA(J,I)*DPB(I)
+ END DO
+ VW(J)=W
+ END DO
+ DO J=1,3
+ DPB(J)=VW(J)
+ END DO
+ END IF
+
+ END