diff options
Diffstat (limited to 'src/slalib/m2av.f')
-rw-r--r-- | src/slalib/m2av.f | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/src/slalib/m2av.f b/src/slalib/m2av.f new file mode 100644 index 0000000..1299ed9 --- /dev/null +++ b/src/slalib/m2av.f @@ -0,0 +1,59 @@ + SUBROUTINE sla_M2AV (RMAT, AXVEC) +*+ +* - - - - - +* M 2 A V +* - - - - - +* +* From a rotation matrix, determine the corresponding axial vector +* (single precision) +* +* A rotation matrix describes a rotation about some arbitrary axis. +* The axis is called the Euler axis, and the angle through which the +* reference frame rotates is called the Euler angle. The axial +* vector returned by this routine has the same direction as the +* Euler axis, and its magnitude is the Euler angle in radians. (The +* magnitude and direction can be separated by means of the routine +* sla_VN.) +* +* Given: +* RMAT r(3,3) rotation matrix +* +* Returned: +* AXVEC r(3) axial vector (radians) +* +* The reference frame rotates clockwise as seen looking along +* the axial vector from the origin. +* +* If RMAT is null, so is the result. +* +* P.T.Wallace Starlink 11 April 1990 +* +* Copyright (C) 1995 Rutherford Appleton Laboratory +*- + + IMPLICIT NONE + + REAL RMAT(3,3),AXVEC(3) + + REAL X,Y,Z,S2,C2,PHI,F + + + + X = RMAT(2,3)-RMAT(3,2) + Y = RMAT(3,1)-RMAT(1,3) + Z = RMAT(1,2)-RMAT(2,1) + S2 = SQRT(X*X+Y*Y+Z*Z) + IF (S2.NE.0.0) THEN + C2 = (RMAT(1,1)+RMAT(2,2)+RMAT(3,3)-1.0) + PHI = ATAN2(S2/2.0,C2/2.0) + F = PHI/S2 + AXVEC(1) = X*F + AXVEC(2) = Y*F + AXVEC(3) = Z*F + ELSE + AXVEC(1) = 0.0 + AXVEC(2) = 0.0 + AXVEC(3) = 0.0 + END IF + + END |