diff options
Diffstat (limited to 'src/slalib/sun67.htx/node145.html')
-rw-r--r-- | src/slalib/sun67.htx/node145.html | 279 |
1 files changed, 279 insertions, 0 deletions
diff --git a/src/slalib/sun67.htx/node145.html b/src/slalib/sun67.htx/node145.html new file mode 100644 index 0000000..8fbb853 --- /dev/null +++ b/src/slalib/sun67.htx/node145.html @@ -0,0 +1,279 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> +<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997) + by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds +* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan +* with significant contributions from: + Jens Lippman, Marek Rouchal, Martin Wilck and others --> +<HTML> +<HEAD> +<TITLE>SLA_PERTUE - Perturbed Universal Elements</TITLE> +<META NAME="description" CONTENT="SLA_PERTUE - Perturbed Universal Elements"> +<META NAME="keywords" CONTENT="sun67"> +<META NAME="resource-type" CONTENT="document"> +<META NAME="distribution" CONTENT="global"> +<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1"> +<LINK REL="STYLESHEET" HREF="sun67.css"> +<LINK REL="next" HREF="node146.html"> +<LINK REL="previous" HREF="node144.html"> +<LINK REL="up" HREF="node13.html"> +<LINK REL="next" HREF="node146.html"> +</HEAD> +<BODY > +<BR> <HR> +<A NAME="tex2html1876" HREF="node146.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html1874" HREF="node13.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html1868" HREF="node144.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html1877" HREF="node146.html">SLA_PLANEL - Planet Position from Elements</A> +<BR> +<B>Up:</B> <A NAME="tex2html1875" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A> +<BR> +<B> Previous:</B> <A NAME="tex2html1869" HREF="node144.html">SLA_PERTEL - Perturbed Orbital Elements</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<H2><A NAME="SECTION0004132000000000000000">SLA_PERTUE - Perturbed Universal Elements</A> +<A NAME="xref_SLA_PERTUE"> </A><A NAME="SLA_PERTUE"> </A> +</H2> + <DL> +<DT><STRONG>ACTION:</STRONG> +<DD>Update the universal elements of an asteroid or comet by +applying planetary perturbations. +<P> <DT><STRONG>CALL:</STRONG> +<DD><TT>CALL sla_PERTUE (DATE, U, JSTAT)</TT> +<P> </DL> +<P> <DL> +<DT><STRONG>GIVEN:</STRONG> +<DD> +<BR> +<TABLE CELLPADDING=3> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>DATE1</EM></TD> +<TH ALIGN="LEFT"><B>D</B></TH> +<TD ALIGN="LEFT" NOWRAP>final epoch (TT MJD) for the updated elements</TD> +</TR> +</TABLE></DL> +<P> <DL> +<DT><STRONG>GIVEN and RETURNED:</STRONG> +<DD> +<BR> +<TABLE CELLPADDING=3> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>U</EM></TD> +<TH ALIGN="LEFT"><B>D(13)</B></TH> +<TD ALIGN="LEFT" NOWRAP>universal elements (updated in place)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(1)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>combined mass (<I>M</I>+<I>m</I>)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(2)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>total energy of the orbit (<IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img24.gif" + ALT="$\alpha$">)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(3)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>reference (osculating) epoch (<I>t<SUB>0</SUB></I>)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(4-6)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>position at reference epoch (<IMG WIDTH="17" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" + SRC="img102.gif" + ALT="${\rm \bf r}_0$">)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(7-9)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>velocity at reference epoch (<IMG WIDTH="19" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" + SRC="img103.gif" + ALT="${\rm \bf v}_0$">)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(10)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>heliocentric distance at reference epoch</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(11)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP><IMG WIDTH="39" HEIGHT="25" ALIGN="MIDDLE" BORDER="0" + SRC="img104.gif" + ALT="${\rm \bf r}_0.{\rm \bf v}_0$"></TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(12)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>date (<I>t</I>)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(13)</TD> +<TD></TD> +<TD ALIGN="LEFT" NOWRAP>universal eccentric anomaly (<IMG WIDTH="14" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img105.gif" + ALT="$\psi$">) of date, approx</TD> +</TR> +</TABLE></DL> +<P> <DL> +<DT><STRONG>RETURNED:</STRONG> +<DD> +<BR> +<TABLE CELLPADDING=3> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>JSTAT</EM></TD> +<TH ALIGN="LEFT"><B>I</B></TH> +<TD ALIGN="LEFT" NOWRAP>status:</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD> +<TD ALIGN="LEFT"><B></B></TD> +<TD ALIGN="LEFT" NOWRAP> +102 = warning, distant epoch</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD> +<TD ALIGN="LEFT"><B></B></TD> +<TD ALIGN="LEFT" NOWRAP> +101 = warning, large timespan +(>100 years)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD> +<TD ALIGN="LEFT"><B></B></TD> +<TD ALIGN="LEFT" NOWRAP> +1 to +8 = coincident with major planet +(Note 5)</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD> +<TD ALIGN="LEFT"><B></B></TD> +<TD ALIGN="LEFT" NOWRAP> 0 = OK</TD> +</TR> +<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD> +<TD ALIGN="LEFT"><B></B></TD> +<TD ALIGN="LEFT" NOWRAP> -1 = numerical error</TD> +</TR> +</TABLE></DL> +<P> <DL> +<DT><STRONG>NOTES:</STRONG> +<DD><DL COMPACT> +<DT>1. +<DD>The ``universal'' elements are those which define the orbit for the +purposes of the method of universal variables (see reference 2). +They consist of the combined mass of the two bodies, an epoch, + and the position and velocity vectors (arbitrary reference frame) + at that epoch. The parameter set used here includes also various + quantities that can, in fact, be derived from the other + information. This approach is taken to avoiding unnecessary + computation and loss of accuracy. The supplementary quantities + are (i) <IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img24.gif" + ALT="$\alpha$">, which is proportional to the total energy of the + orbit, (ii) the heliocentric distance at epoch, + (iii) the outwards component of the velocity at the given epoch, + (iv) an estimate of <IMG WIDTH="14" HEIGHT="27" ALIGN="MIDDLE" BORDER="0" + SRC="img105.gif" + ALT="$\psi$">, the ``universal eccentric anomaly'' at a + given date and (v) that date. + <DT>2. +<DD>The universal elements are with respect to the J2000 equator and + equinox. + <DT>3. +<DD>The epochs DATE, U(3) and U(12) are all Modified Julian Dates + (JD-2400000.5). + <DT>4. +<DD>The algorithm is a simplified form of Encke's method. It takes as + a basis the unperturbed motion of the body, and numerically + integrates the perturbing accelerations from the major planets. + The expression used is essentially Sterne's 6.7-2 (reference 1). + Everhart and Pitkin (reference 2) suggest rectifying the orbit at + each integration step by propagating the new perturbed position + and velocity as the new universal variables. In the present + routine the orbit is rectified less frequently than this, in order + to gain a slight speed advantage. However, the rectification is + done directly in terms of position and velocity, as suggested by + Everhart and Pitkin, bypassing the use of conventional orbital + elements. +<P> +The <I>f</I>(<I>q</I>) part of the full Encke method is not used. The purpose + of this part is to avoid subtracting two nearly equal quantities + when calculating the ``indirect member'', which takes account of the + small change in the Sun's attraction due to the slightly displaced + position of the perturbed body. A simpler, direct calculation in + double precision proves to be faster and not significantly less + accurate. +<P> +Apart from employing a variable timestep, and occasionally + ``rectifying the orbit'' to keep the indirect member small, the + integration is done in a fairly straightforward way. The + acceleration estimated for the middle of the timestep is assumed + to apply throughout that timestep; it is also used in the + extrapolation of the perturbations to the middle of the next + timestep, to predict the new disturbed position. There is no + iteration within a timestep. +<P> +Measures are taken to reach a compromise between execution time + and accuracy. The starting-point is the goal of achieving + arcsecond accuracy for ordinary minor planets over a ten-year + timespan. This goal dictates how large the timesteps can be, + which in turn dictates how frequently the unperturbed motion has + to be recalculated from the osculating elements. +<P> +Within predetermined limits, the timestep for the numerical + integration is varied in length in inverse proportion to the + magnitude of the net acceleration on the body from the major + planets. +<P> +The numerical integration requires estimates of the major-planet + motions. Approximate positions for the major planets (Pluto + alone is omitted) are obtained from the routine sla_PLANET. Two + levels of interpolation are used, to enhance speed without + significantly degrading accuracy. At a low frequency, the routine + sla_PLANET is called to generate updated position+velocity ``state + vectors''. The only task remaining to be carried out at the full + frequency (<I>i.e.</I> at each integration step) is to use the state + vectors to extrapolate the planetary positions. In place of a + strictly linear extrapolation, some allowance is made for the + curvature of the orbit by scaling back the radius vector as the + linear extrapolation goes off at a tangent. +<P> +Various other approximations are made. For example, perturbations + by Pluto and the minor planets are neglected, relativistic effects + are not taken into account and the Earth-Moon system is treated as + a single body. +<P> +In the interests of simplicity, the background calculations for + the major planets are carried out <I>en masse.</I> + The mean elements and + state vectors for all the planets are refreshed at the same time, + without regard for orbit curvature, mass or proximity. +<P> <DT>5. +<DD>This routine is not intended to be used for major planets. + However, if major-planet elements are supplied, sensible results + will, in fact, be produced. This happens because the routine + checks the separation between the body and each of the planets and + interprets a suspiciously small value (0.001 AU) as an attempt to + apply the routine to the planet concerned. If this condition + is detected, the + contribution from that planet is ignored, and the status is set to + the planet number (Mercury=1,...,Neptune=8) as a warning. + </DL></DL> +<P> <DL> +<DT><STRONG>REFERENCES:</STRONG> +<DD><DL COMPACT> +<DT>1. +<DD>Sterne, Theodore E., <I>An Introduction to Celestial Mechanics,</I> +Interscience Publishers, 1960. Section 6.7, p199. +<DT>2. +<DD>Everhart, E. & Pitkin, E.T., Am. J. Phys. 51, 712, 1983. + </DL></DL> +<BR> <HR> +<A NAME="tex2html1876" HREF="node146.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html1874" HREF="node13.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html1868" HREF="node144.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html1877" HREF="node146.html">SLA_PLANEL - Planet Position from Elements</A> +<BR> +<B>Up:</B> <A NAME="tex2html1875" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A> +<BR> +<B> Previous:</B> <A NAME="tex2html1869" HREF="node144.html">SLA_PERTEL - Perturbed Orbital Elements</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<ADDRESS> +<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I> +</ADDRESS> +</BODY> +</HTML> |