diff options
Diffstat (limited to 'src/slalib/sun67.htx/node226.html')
-rw-r--r-- | src/slalib/sun67.htx/node226.html | 212 |
1 files changed, 212 insertions, 0 deletions
diff --git a/src/slalib/sun67.htx/node226.html b/src/slalib/sun67.htx/node226.html new file mode 100644 index 0000000..41baa89 --- /dev/null +++ b/src/slalib/sun67.htx/node226.html @@ -0,0 +1,212 @@ +<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> +<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997) + by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds +* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan +* with significant contributions from: + Jens Lippman, Marek Rouchal, Martin Wilck and others --> +<HTML> +<HEAD> +<TITLE>Focal-Plane Astrometry</TITLE> +<META NAME="description" CONTENT="Focal-Plane Astrometry"> +<META NAME="keywords" CONTENT="sun67"> +<META NAME="resource-type" CONTENT="document"> +<META NAME="distribution" CONTENT="global"> +<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1"> +<LINK REL="STYLESHEET" HREF="sun67.css"> +<LINK REL="next" HREF="node227.html"> +<LINK REL="previous" HREF="node225.html"> +<LINK REL="up" HREF="node197.html"> +<LINK REL="next" HREF="node227.html"> +</HEAD> +<BODY > +<BR> <HR> +<A NAME="tex2html2713" HREF="node227.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html2711" HREF="node197.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html2705" HREF="node225.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html2714" HREF="node227.html">Numerical Methods</A> +<BR> +<B>Up:</B> <A NAME="tex2html2712" HREF="node197.html">EXPLANATION AND EXAMPLES</A> +<BR> +<B> Previous:</B> <A NAME="tex2html2706" HREF="node225.html">Radial Velocity and Light-Time Corrections</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<H2><A NAME="SECTION000520000000000000000"> +Focal-Plane Astrometry</A> +</H2> +The relationship between the position of a star image in +the focal plane of a telescope and the star's celestial +coordinates is usually described in terms of the <I>tangent plane</I> +or <I>gnomonic</I> projection. This is the projection produced +by a pin-hole camera and is a good approximation to the projection +geometry of a traditional large <I>f</I>-ratio astrographic refractor. +SLALIB includes a group of routines which transform +star positions between their observed places on the celestial +sphere and their <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> coordinates in the tangent plane. The +spherical coordinate system does not have to be <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> but +usually is. The so-called <I>standard coordinates</I> of a star +are the tangent plane <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$">, in radians, with respect to an origin +at the tangent point, with the <I>y</I>-axis pointing north and +the <I>x</I>-axis pointing east (in the direction of increasing <IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0" + SRC="img24.gif" + ALT="$\alpha$">). +The factor relating the standard coordinates to +the actual <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> coordinates in, say, millimetres is simply +the focal length of the telescope. +<P> +Given the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> of the <I>plate centre</I> (the tangent point) +and the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> of a star within the field, the standard +coordinates can be determined by calling +sla_S2TP +(single precision) or +sla_DS2TP +(double precision). The reverse transformation, where the +<IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> is known and we wish to find the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$">, is carried out by calling +sla_TP2S +or +sla_DTP2S. +Occasionally we know the both the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> and the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> of a +star and need to deduce the <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> of the tangent point; +this can be done by calling +sla_TPS2C +or +sla_DTPS2C. +(All of these transformations apply not just to <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img3.gif" + ALT="$[\,\alpha,\delta\,]$"> but to +other spherical coordinate systems, of course.) +Equivalent (and faster) +routines are provided which work directly in <IMG WIDTH="58" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img50.gif" + ALT="$[\,x,y,z\,]$"> instead of +spherical coordinates: +sla_V2TP and +sla_DV2TP, +sla_TP2V and +sla_DTP2V, +sla_TPV2C and +sla_DTPV2C. +<P> +Even at the best of times, the tangent plane projection is merely an +approximation. Some telescopes and cameras exhibit considerable pincushion +or barrel distortion and some have a curved focal surface. +For example, neither Schmidt cameras nor (especially) +large reflecting telescopes with wide-field corrector lenses +are adequately modelled by tangent-plane geometry. In such +cases, however, it is still possible to do most of the work +using the (mathematically convenient) tangent-plane +projection by inserting an extra step which applies or +removes the distortion peculiar to the system concerned. +A simple <I>r<SUB>1</SUB></I>=<I>r<SUB>0</SUB></I>(1+<I>Kr<SUB>0</SUB></I><SUP>2</SUP>) law works well in the +majority of cases; <I>r<SUB>0</SUB></I> is the radial distance in the +tangent plane, <I>r<SUB>1</SUB></I> is the radial distance after adding +the distortion, and <I>K</I> is a constant which depends on the +telescope (<IMG WIDTH="10" HEIGHT="13" ALIGN="BOTTOM" BORDER="0" + SRC="img298.gif" + ALT="$\theta$"> is unaffected). The routine +sla_PCD +applies the distortion to an <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> and +sla_UNPCD +removes it. For <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> in radians, <I>K</I> values range from -1/3 for the +tiny amount of barrel distortion in Schmidt geometry to several +hundred for the serious pincushion distortion +produced by wide-field correctors in big reflecting telescopes +(the AAT prime focus triplet corrector is about <I>K</I>=+178.6). +<P> +SLALIB includes a group of routines which can be put together +to build a simple plate-reduction program. The heart of the group is +sla_FITXY, +which fits a linear model to relate two sets of <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> coordinates, +in the case of a plate reduction the measured positions of the +images of a set of +reference stars and the standard +coordinates derived from their catalogue positions. The +model is of the form: + +<P ALIGN="CENTER"> +<I>x</I><SUB><I>p</I></SUB> = <I>a</I> + <I>bx</I><SUB><I>m</I></SUB> + <I>cy</I><SUB><I>m</I></SUB> +</P> + +<P ALIGN="CENTER"> +<I>y</I><SUB><I>p</I></SUB> = <I>d</I> + <I>ex</I><SUB><I>m</I></SUB> + <I>fy</I><SUB><I>m</I></SUB> +</P> +<P> +where the <I>p</I> subscript indicates ``predicted'' coordinates +(the model's approximation to the ideal ``expected'' coordinates) and the +<I>m</I> subscript indicates ``measured coordinates''. The +six coefficients <I>a-f</I> can optionally be +constrained to represent a ``solid body rotation'' free of +any squash or shear distortions. Without this constraint +the model can, to some extent, accommodate effects like refraction, +allowing mean places to be used directly and +avoiding the extra complications of a +full mean-apparent-observed transformation for each star. +Having obtained the linear model, +sla_PXY +can be used to process the set of measured and expected +coordinates, giving the predicted coordinates and determining +the RMS residuals in <I>x</I> and <I>y</I>. +The routine +sla_XY2XY +transforms one <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0" + SRC="img20.gif" + ALT="$[\,x,y\,]$"> into another using the linear model. A model +can be inverted by calling +sla_INVF, +and decomposed into zero points, scales, <I>x</I>/<I>y</I> nonperpendicularity +and orientation by calling +sla_DCMPF. +<P> +<BR> <HR> +<A NAME="tex2html2713" HREF="node227.html"> +<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> +<A NAME="tex2html2711" HREF="node197.html"> +<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> +<A NAME="tex2html2705" HREF="node225.html"> +<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0" + SRC="contents_motif.gif"></A> +<BR> +<B> Next:</B> <A NAME="tex2html2714" HREF="node227.html">Numerical Methods</A> +<BR> +<B>Up:</B> <A NAME="tex2html2712" HREF="node197.html">EXPLANATION AND EXAMPLES</A> +<BR> +<B> Previous:</B> <A NAME="tex2html2706" HREF="node225.html">Radial Velocity and Light-Time Corrections</A> +<BR> <HR> <P> +<P><!--End of Navigation Panel--> +<ADDRESS> +<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I> +</ADDRESS> +</BODY> +</HTML> |