aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/dmat.f
blob: 2480b82909be5b1581151bb149e71875297dbbd2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
SUBROUTINE sla_DMAT (N, A, Y, D, JF, IW)
*+
*     - - - - -
*      D M A T
*     - - - - -
*
*  Matrix inversion & solution of simultaneous equations
*  (double precision)
*
*  For the set of n simultaneous equations in n unknowns:
*     A.Y = X
*
*  where:
*     A is a non-singular N x N matrix
*     Y is the vector of N unknowns
*     X is the known vector
*
*  DMATRX computes:
*     the inverse of matrix A
*     the determinant of matrix A
*     the vector of N unknowns
*
*  Arguments:
*
*     symbol  type   dimension           before              after
*
*       N      i                    no. of unknowns       unchanged
*       A      d      (N,N)             matrix             inverse
*       Y      d       (N)              vector            solution
*       D      d                           -             determinant
*     * JF     i                           -           singularity flag
*       IW     i       (N)                 -              workspace
*
*  *  JF is the singularity flag.  If the matrix is non-singular,
*    JF=0 is returned.  If the matrix is singular, JF=-1 & D=0D0 are
*    returned.  In the latter case, the contents of array A on return
*    are undefined.
*
*  Algorithm:
*     Gaussian elimination with partial pivoting.
*
*  Speed:
*     Very fast.
*
*  Accuracy:
*     Fairly accurate - errors 1 to 4 times those of routines optimized
*     for accuracy.
*
*  P.T.Wallace   Starlink   7 February 1995
*
*  Copyright (C) 1995 Rutherford Appleton Laboratory
*-

      IMPLICIT NONE

      INTEGER N
      DOUBLE PRECISION A(N,N),Y(N),D
      INTEGER JF
      INTEGER IW(N)

      DOUBLE PRECISION SFA
      PARAMETER (SFA=1D-20)

      INTEGER K,IMX,I,J,NP1MK,KI
      DOUBLE PRECISION AMX,T,AKK,YK,AIK


      JF=0
      D=1D0
      DO K=1,N
         AMX=DABS(A(K,K))
         IMX=K
         IF (K.NE.N) THEN
            DO I=K+1,N
               T=DABS(A(I,K))
               IF (T.GT.AMX) THEN
                  AMX=T
                  IMX=I
               END IF
            END DO
         END IF
         IF (AMX.LT.SFA) THEN
            JF=-1
         ELSE
            IF (IMX.NE.K) THEN
               DO J=1,N
                  T=A(K,J)
                  A(K,J)=A(IMX,J)
                  A(IMX,J)=T
               END DO
               T=Y(K)
               Y(K)=Y(IMX)
               Y(IMX)=T
               D=-D
            END IF
            IW(K)=IMX
            AKK=A(K,K)
            D=D*AKK
            IF (DABS(D).LT.SFA) THEN
               JF=-1
            ELSE
               AKK=1D0/AKK
               A(K,K)=AKK
               DO J=1,N
                  IF (J.NE.K) A(K,J)=A(K,J)*AKK
               END DO
               YK=Y(K)*AKK
               Y(K)=YK
               DO I=1,N
                  AIK=A(I,K)
                  IF (I.NE.K) THEN
                     DO J=1,N
                        IF (J.NE.K) A(I,J)=A(I,J)-AIK*A(K,J)
                     END DO
                     Y(I)=Y(I)-AIK*YK
                  END IF
               END DO
               DO I=1,N
                  IF (I.NE.K) A(I,K)=-A(I,K)*AKK
               END DO
            END IF
         END IF
      END DO
      IF (JF.NE.0) THEN
         D=0D0
      ELSE
         DO K=1,N
            NP1MK=N+1-K
            KI=IW(NP1MK)
            IF (NP1MK.NE.KI) THEN
               DO I=1,N
                  T=A(I,NP1MK)
                  A(I,NP1MK)=A(I,KI)
                  A(I,KI)=T
               END DO
            END IF
         END DO
      END IF

      END