1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
SUBROUTINE sla_EARTH (IY, ID, FD, PV)
*+
* - - - - - -
* E A R T H
* - - - - - -
*
* Approximate heliocentric position and velocity of the Earth
*
* Given:
* IY I year
* ID I day in year (1 = Jan 1st)
* FD R fraction of day
*
* Returned:
* PV R(6) Earth position & velocity vector
*
* Notes:
*
* 1 The date and time is TDB (loosely ET) in a Julian calendar
* which has been aligned to the ordinary Gregorian
* calendar for the interval 1900 March 1 to 2100 February 28.
* The year and day can be obtained by calling sla_CALYD or
* sla_CLYD.
*
* 2 The Earth heliocentric 6-vector is mean equator and equinox
* of date. Position part, PV(1-3), is in AU; velocity part,
* PV(4-6), is in AU/sec.
*
* 3 Max/RMS errors 1950-2050:
* 13/5 E-5 AU = 19200/7600 km in position
* 47/26 E-10 AU/s = 0.0070/0.0039 km/s in speed
*
* 4 More precise results are obtainable with the routine sla_EVP.
*
* P.T.Wallace Starlink 23 November 1994
*
* Copyright (C) 1995 Rutherford Appleton Laboratory
*-
IMPLICIT NONE
INTEGER IY,ID
REAL FD,PV(6)
INTEGER IY4
REAL TWOPI,SPEED,REMB,SEMB,YI,YF,T,ELM,GAMMA,EM,ELT,EPS0,
: E,ESQ,V,R,ELMM,COSELT,SINEPS,COSEPS,W1,W2,SELMM,CELMM
PARAMETER (TWOPI=6.28318530718)
* Mean orbital speed of Earth, AU/s
PARAMETER (SPEED=1.9913E-7)
* Mean Earth:EMB distance and speed, AU and AU/s
PARAMETER (REMB=3.12E-5,SEMB=8.31E-11)
* Whole years & fraction of year, and years since J1900.0
YI=FLOAT(IY-1900)
IY4=MOD(MOD(IY,4)+4,4)
YF=(FLOAT(4*(ID-1/(IY4+1))-IY4-2)+4.0*FD)/1461.0
T=YI+YF
* Geometric mean longitude of Sun
* (cf 4.881627938+6.283319509911*T MOD 2PI)
ELM=MOD(4.881628+TWOPI*YF+0.00013420*T,TWOPI)
* Mean longitude of perihelion
GAMMA=4.908230+3.0005E-4*T
* Mean anomaly
EM=ELM-GAMMA
* Mean obliquity
EPS0=0.40931975-2.27E-6*T
* Eccentricity
E=0.016751-4.2E-7*T
ESQ=E*E
* True anomaly
V=EM+2.0*E*SIN(EM)+1.25*ESQ*SIN(2.0*EM)
* True ecliptic longitude
ELT=V+GAMMA
* True distance
R=(1.0-ESQ)/(1.0+E*COS(V))
* Moon's mean longitude
ELMM=MOD(4.72+83.9971*T,TWOPI)
* Useful functions
COSELT=COS(ELT)
SINEPS=SIN(EPS0)
COSEPS=COS(EPS0)
W1=-R*SIN(ELT)
W2=-SPEED*(COSELT+E*COS(GAMMA))
SELMM=SIN(ELMM)
CELMM=COS(ELMM)
* Earth position and velocity
PV(1)=-R*COSELT-REMB*CELMM
PV(2)=(W1-REMB*SELMM)*COSEPS
PV(3)=W1*SINEPS
PV(4)=SPEED*(SIN(ELT)+E*SIN(GAMMA))+SEMB*SELMM
PV(5)=(W2-SEMB*CELMM)*COSEPS
PV(6)=W2*SINEPS
END
|