aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/invf.f
blob: f323228080ceae104518db0381c7bca35d6f7e96 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
SUBROUTINE sla_INVF (FWDS,BKWDS,J)
*+
*     - - - - -
*      I N V F
*     - - - - -
*
*  Invert a linear model of the type produced by the
*  sla_FITXY routine.
*
*  Given:
*     FWDS    d(6)      model coefficients
*
*  Returned:
*     BKWDS   d(6)      inverse model
*     J        i        status:  0 = OK, -1 = no inverse
*
*  The models relate two sets of [X,Y] coordinates as follows.
*  Naming the elements of FWDS:
*
*     FWDS(1) = A
*     FWDS(2) = B
*     FWDS(3) = C
*     FWDS(4) = D
*     FWDS(5) = E
*     FWDS(6) = F
*
*  where two sets of coordinates [X1,Y1] and [X2,Y1] are related
*  thus:
*
*     X2 = A + B*X1 + C*Y1
*     Y2 = D + E*X1 + F*Y1
*
*  the present routine generates a new set of coefficients:
*
*     BKWDS(1) = P
*     BKWDS(2) = Q
*     BKWDS(3) = R
*     BKWDS(4) = S
*     BKWDS(5) = T
*     BKWDS(6) = U
*
*  such that:
*
*     X1 = P + Q*X2 + R*Y2
*     Y1 = S + T*X2 + U*Y2
*
*  Two successive calls to sla_INVF will thus deliver a set
*  of coefficients equal to the starting values.
*
*  To comply with the ANSI Fortran standard, FWDS and BKWDS must
*  not be the same array, even though the routine is coded to
*  work on the VAX and most other computers even if this rule
*  is violated.
*
*  See also sla_FITXY, sla_PXY, sla_XY2XY, sla_DCMPF
*
*  P.T.Wallace   Starlink   11 April 1990
*
*  Copyright (C) 1995 Rutherford Appleton Laboratory
*-

      IMPLICIT NONE

      DOUBLE PRECISION FWDS(6),BKWDS(6)
      INTEGER J

      DOUBLE PRECISION A,B,C,D,E,F,DET



      A=FWDS(1)
      B=FWDS(2)
      C=FWDS(3)
      D=FWDS(4)
      E=FWDS(5)
      F=FWDS(6)
      DET=B*F-C*E
      IF (DET.NE.0D0) THEN
         BKWDS(1)=(C*D-A*F)/DET
         BKWDS(2)=F/DET
         BKWDS(3)=-C/DET
         BKWDS(4)=(A*E-B*D)/DET
         BKWDS(5)=-E/DET
         BKWDS(6)=B/DET
         J=0
      ELSE
         J=-1
      END IF

      END