1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
SUBROUTINE sla_MAPQK (RM, DM, PR, PD, PX, RV, AMPRMS, RA, DA)
*+
* - - - - - -
* M A P Q K
* - - - - - -
*
* Quick mean to apparent place: transform a star RA,Dec from
* mean place to geocentric apparent place, given the
* star-independent parameters.
*
* Use of this routine is appropriate when efficiency is important
* and where many star positions, all referred to the same equator
* and equinox, are to be transformed for one epoch. The
* star-independent parameters can be obtained by calling the
* sla_MAPPA routine.
*
* If the parallax and proper motions are zero the sla_MAPQKZ
* routine can be used instead.
*
* The reference frames and timescales used are post IAU 1976.
*
* Given:
* RM,DM d mean RA,Dec (rad)
* PR,PD d proper motions: RA,Dec changes per Julian year
* PX d parallax (arcsec)
* RV d radial velocity (km/sec, +ve if receding)
*
* AMPRMS d(21) star-independent mean-to-apparent parameters:
*
* (1) time interval for proper motion (Julian years)
* (2-4) barycentric position of the Earth (AU)
* (5-7) heliocentric direction of the Earth (unit vector)
* (8) (grav rad Sun)*2/(Sun-Earth distance)
* (9-11) barycentric Earth velocity in units of c
* (12) sqrt(1-v**2) where v=modulus(ABV)
* (13-21) precession/nutation (3,3) matrix
*
* Returned:
* RA,DA d apparent RA,Dec (rad)
*
* References:
* 1984 Astronomical Almanac, pp B39-B41.
* (also Lederle & Schwan, Astron. Astrophys. 134,
* 1-6, 1984)
*
* Notes:
*
* 1) The vectors AMPRMS(2-4) and AMPRMS(5-7) are referred to
* the mean equinox and equator of epoch EQ.
*
* 2) Strictly speaking, the routine is not valid for solar-system
* sources, though the error will usually be extremely small.
* However, to prevent gross errors in the case where the
* position of the Sun is specified, the gravitational
* deflection term is restrained within about 920 arcsec of the
* centre of the Sun's disc. The term has a maximum value of
* about 1.85 arcsec at this radius, and decreases to zero as
* the centre of the disc is approached.
*
* Called:
* sla_DCS2C spherical to Cartesian
* sla_DVDV dot product
* sla_DMXV matrix x vector
* sla_DCC2S Cartesian to spherical
* sla_DRANRM normalize angle 0-2Pi
*
* P.T.Wallace Starlink 23 August 1996
*
* Copyright (C) 1996 Rutherford Appleton Laboratory
*-
IMPLICIT NONE
DOUBLE PRECISION RM,DM,PR,PD,PX,RV,AMPRMS(21),RA,DA
* Arc seconds to radians
DOUBLE PRECISION AS2R
PARAMETER (AS2R=0.484813681109535994D-5)
* Km/s to AU/year
DOUBLE PRECISION VF
PARAMETER (VF=0.21094502D0)
INTEGER I
DOUBLE PRECISION PMT,GR2E,AB1,EB(3),EHN(3),ABV(3),
: Q(3),PXR,W,EM(3),P(3),PN(3),PDE,PDEP1,
: P1(3),P1DV,P1DVP1,P2(3),P3(3)
DOUBLE PRECISION sla_DVDV,sla_DRANRM
* Unpack scalar and vector parameters
PMT = AMPRMS(1)
GR2E = AMPRMS(8)
AB1 = AMPRMS(12)
DO I=1,3
EB(I) = AMPRMS(I+1)
EHN(I) = AMPRMS(I+4)
ABV(I) = AMPRMS(I+8)
END DO
* Spherical to x,y,z
CALL sla_DCS2C(RM,DM,Q)
* Space motion (radians per year)
PXR = PX*AS2R
W = VF*RV*PXR
EM(1) = -PR*Q(2)-PD*COS(RM)*SIN(DM)+W*Q(1)
EM(2) = PR*Q(1)-PD*SIN(RM)*SIN(DM)+W*Q(2)
EM(3) = PD*COS(DM) +W*Q(3)
* Geocentric direction of star (normalized)
DO I=1,3
P(I) = Q(I)+PMT*EM(I)-PXR*EB(I)
END DO
CALL sla_DVN(P,PN,W)
* Light deflection (restrained within the Sun's disc)
PDE = sla_DVDV(PN,EHN)
PDEP1 = PDE+1D0
W = GR2E/MAX(PDEP1,1D-5)
DO I=1,3
P1(I) = PN(I)+W*(EHN(I)-PDE*PN(I))
END DO
* Aberration
P1DV = sla_DVDV(P1,ABV)
P1DVP1 = P1DV+1D0
W = 1D0+P1DV/(AB1+1D0)
DO I=1,3
P2(I) = (AB1*P1(I)+W*ABV(I))/P1DVP1
END DO
* Precession and nutation
CALL sla_DMXV(AMPRMS(13),P2,P3)
* Geocentric apparent RA,Dec
CALL sla_DCC2S(P3,RA,DA)
RA = sla_DRANRM(RA)
END
|