aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/pertue.f
blob: d6f6f53ac6b17e99e30bf3ed46e2e6e852ea188f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
SUBROUTINE sla_PERTUE (DATE, U, JSTAT)
*+
*     - - - - - - -
*      P E R T U E
*     - - - - - - -
*
*  Update the universal elements of an asteroid or comet by applying
*  planetary perturbations.
*
*  Given:
*     DATE     d       final epoch (TT MJD) for the updated elements
*
*  Given and returned:
*     U        d(13)   universal elements (updated in place)
*
*                (1)   combined mass (M+m)
*                (2)   total energy of the orbit (alpha)
*                (3)   reference (osculating) epoch (t0)
*              (4-6)   position at reference epoch (r0)
*              (7-9)   velocity at reference epoch (v0)
*               (10)   heliocentric distance at reference epoch
*               (11)   r0.v0
*               (12)   date (t)
*               (13)   universal eccentric anomaly (psi) of date, approx
*
*  Returned:
*     JSTAT    i       status:
*                          +102 = warning, distant epoch
*                          +101 = warning, large timespan ( > 100 years)
*                      +1 to +8 = coincident with major planet (Note 5)
*                             0 = OK
*                            -1 = numerical error
*
*  Called:  sla_PLANET, sla_UE2PV, sla_PV2UE
*
*  Notes:
*
*  1  The "universal" elements are those which define the orbit for the
*     purposes of the method of universal variables (see reference 2).
*     They consist of the combined mass of the two bodies, an epoch,
*     and the position and velocity vectors (arbitrary reference frame)
*     at that epoch.  The parameter set used here includes also various
*     quantities that can, in fact, be derived from the other
*     information.  This approach is taken to avoiding unnecessary
*     computation and loss of accuracy.  The supplementary quantities
*     are (i) alpha, which is proportional to the total energy of the
*     orbit, (ii) the heliocentric distance at epoch, (iii) the
*     outwards component of the velocity at the given epoch, (iv) an
*     estimate of psi, the "universal eccentric anomaly" at a given
*     date and (v) that date.
*
*  2  The universal elements are with respect to the J2000 equator and
*     equinox.
*
*  3  The epochs DATE, U(3) and U(12) are all Modified Julian Dates
*     (JD-2400000.5).
*
*  4  The algorithm is a simplified form of Encke's method.  It takes as
*     a basis the unperturbed motion of the body, and numerically
*     integrates the perturbing accelerations from the major planets.
*     The expression used is essentially Sterne's 6.7-2 (reference 1).
*     Everhart and Pitkin (reference 2) suggest rectifying the orbit at
*     each integration step by propagating the new perturbed position
*     and velocity as the new universal variables.  In the present
*     routine the orbit is rectified less frequently than this, in order
*     to gain a slight speed advantage.  However, the rectification is
*     done directly in terms of position and velocity, as suggested by
*     Everhart and Pitkin, bypassing the use of conventional orbital
*     elements.
*
*     The f(q) part of the full Encke method is not used.  The purpose
*     of this part is to avoid subtracting two nearly equal quantities
*     when calculating the "indirect member", which takes account of the
*     small change in the Sun's attraction due to the slightly displaced
*     position of the perturbed body.  A simpler, direct calculation in
*     double precision proves to be faster and not significantly less
*     accurate.
*
*     Apart from employing a variable timestep, and occasionally
*     "rectifying the orbit" to keep the indirect member small, the
*     integration is done in a fairly straightforward way.  The
*     acceleration estimated for the middle of the timestep is assumed
*     to apply throughout that timestep;  it is also used in the
*     extrapolation of the perturbations to the middle of the next
*     timestep, to predict the new disturbed position.  There is no
*     iteration within a timestep.
*
*     Measures are taken to reach a compromise between execution time
*     and accuracy.  The starting-point is the goal of achieving
*     arcsecond accuracy for ordinary minor planets over a ten-year
*     timespan.  This goal dictates how large the timesteps can be,
*     which in turn dictates how frequently the unperturbed motion has
*     to be recalculated from the osculating elements.
*
*     Within predetermined limits, the timestep for the numerical
*     integration is varied in length in inverse proportion to the
*     magnitude of the net acceleration on the body from the major
*     planets.
*
*     The numerical integration requires estimates of the major-planet
*     motions.  Approximate positions for the major planets (Pluto
*     alone is omitted) are obtained from the routine sla_PLANET.  Two
*     levels of interpolation are used, to enhance speed without
*     significantly degrading accuracy.  At a low frequency, the routine
*     sla_PLANET is called to generate updated position+velocity "state
*     vectors".  The only task remaining to be carried out at the full
*     frequency (i.e. at each integration step) is to use the state
*     vectors to extrapolate the planetary positions.  In place of a
*     strictly linear extrapolation, some allowance is made for the
*     curvature of the orbit by scaling back the radius vector as the
*     linear extrapolation goes off at a tangent.
*
*     Various other approximations are made.  For example, perturbations
*     by Pluto and the minor planets are neglected, relativistic effects
*     are not taken into account and the Earth-Moon system is treated as
*     a single body.
*
*     In the interests of simplicity, the background calculations for
*     the major planets are carried out en masse.  The mean elements and
*     state vectors for all the planets are refreshed at the same time,
*     without regard for orbit curvature, mass or proximity.
*
*  5  This routine is not intended to be used for major planets.
*     However, if major-planet elements are supplied, sensible results
*     will, in fact, be produced.  This happens because the routine
*     checks the separation between the body and each of the planets and
*     interprets a suspiciously small value (0.001 AU) as an attempt to
*     apply the routine to the planet concerned.  If this condition is
*     detected, the contribution from that planet is ignored, and the
*     status is set to the planet number (Mercury=1,...,Neptune=8) as a
*     warning.
*
*  References:
*
*     1  Sterne, Theodore E., "An Introduction to Celestial Mechanics",
*        Interscience Publishers Inc., 1960.  Section 6.7, p199.
*
*     2  Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983.
*
*  P.T.Wallace   Starlink   18 March 1999
*
*  Copyright (C) 1999 Rutherford Appleton Laboratory
*-

      IMPLICIT NONE
      DOUBLE PRECISION DATE,U(13)
      INTEGER JSTAT

*  Coefficient relating timestep to perturbing force
      DOUBLE PRECISION TSC
      PARAMETER (TSC=1D-4)

*  Minimum and maximum timestep (days)
      DOUBLE PRECISION TSMIN,TSMAX
      PARAMETER (TSMIN=0.01D0,TSMAX=10D0)

*  Age limit for major-planet state vector (days)
      DOUBLE PRECISION AGEPMO
      PARAMETER (AGEPMO=5D0)

*  Age limit for major-planet mean elements (days)
      DOUBLE PRECISION AGEPEL
      PARAMETER (AGEPEL=50D0)

*  Margin for error when deciding whether to renew the planetary data
      DOUBLE PRECISION TINY
      PARAMETER (TINY=1D-6)

*  Age limit for the body's osculating elements (before rectification)
      DOUBLE PRECISION AGEBEL
      PARAMETER (AGEBEL=100D0)

*  Gaussian gravitational constant (exact) and square
      DOUBLE PRECISION GCON,GCON2
      PARAMETER (GCON=0.01720209895D0,GCON2=GCON*GCON)

*  The final epoch
      DOUBLE PRECISION TFINAL

*  The body's current universal elements
      DOUBLE PRECISION UL(13)

*  Current reference epoch
      DOUBLE PRECISION T0

*  Timespan from latest orbit rectification to final epoch (days)
      DOUBLE PRECISION TSPAN

*  Time left to go before integration is complete
      DOUBLE PRECISION TLEFT

*  Time direction flag: +1=forwards, -1=backwards
      DOUBLE PRECISION FB

*  First-time flag
      LOGICAL FIRST

*
*  The current perturbations
*
*  Epoch (days relative to current reference epoch)
      DOUBLE PRECISION RTN
*  Position (AU)
      DOUBLE PRECISION PERP(3)
*  Velocity (AU/d)
      DOUBLE PRECISION PERV(3)
*  Acceleration (AU/d/d)
      DOUBLE PRECISION PERA(3)
*

*  Length of current timestep (days), and half that
      DOUBLE PRECISION TS,HTS

*  Epoch of middle of timestep
      DOUBLE PRECISION T

*  Epoch of planetary mean elements
      DOUBLE PRECISION TPEL

*  Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune)
      INTEGER NP

*  Planetary universal orbital elements
      DOUBLE PRECISION UP(13,8)

*  Epoch of planetary state vectors
      DOUBLE PRECISION TPMO

*  State vectors for the major planets (AU,AU/s)
      DOUBLE PRECISION PVIN(6,8)

*
*  Correction terms for extrapolated major planet vectors
*
*  Sun-to-planet distances squared multiplied by 3
      DOUBLE PRECISION R2X3(8)
*  Sunward acceleration terms, G/2R^3
      DOUBLE PRECISION GC(8)
*  Tangential-to-circular correction factor
      DOUBLE PRECISION FC
*  Radial correction factor due to Sunwards acceleration
      DOUBLE PRECISION FG
*

*  The body's unperturbed and perturbed state vectors (AU,AU/s)
      DOUBLE PRECISION PV0(6),PV(6)

*  The body's perturbed and unperturbed heliocentric distances (AU) cubed
      DOUBLE PRECISION R03,R3

*  The perturbating accelerations, indirect and direct
      DOUBLE PRECISION FI(3),FD(3)

*  Sun-to-planet vector, and distance cubed
      DOUBLE PRECISION RHO(3),RHO3

*  Body-to-planet vector, and distance cubed
      DOUBLE PRECISION DELTA(3),DELTA3

*  Miscellaneous
      INTEGER I,J
      DOUBLE PRECISION R2,W,DT,DT2,FT

*  Planetary inverse masses, Mercury through Neptune
      DOUBLE PRECISION AMAS(8)
      DATA AMAS / 6023600D0,408523.5D0,328900.5D0,3098710D0,
     :            1047.355D0,3498.5D0,22869D0,19314D0 /

*---------------------------------------------------------------------*


*  Preset the status to OK.
      JSTAT = 0

*  Copy the final epoch.
      TFINAL = DATE

*  Copy the elements (which will be periodically updated).
      DO I=1,13
         UL(I) = U(I)
      END DO

*  Initialize the working reference epoch.
      T0=UL(3)

*  Total timespan (days) and hence time left.
      TSPAN = TFINAL-T0
      TLEFT = TSPAN

*  Warn if excessive.
      IF (ABS(TSPAN).GT.36525D0) JSTAT=101

*  Time direction: +1 for forwards, -1 for backwards.
      FB = SIGN(1D0,TSPAN)

*  Initialize relative epoch for start of current timestep.
      RTN = 0D0

*  Reset the perturbations (position, velocity, acceleration).
      DO I=1,3
         PERP(I) = 0D0
         PERV(I) = 0D0
         PERA(I) = 0D0
      END DO

*  Set "first iteration" flag.
      FIRST = .TRUE.

*  Step through the time left.
      DO WHILE (FB*TLEFT.GT.0D0)

*     Magnitude of current acceleration due to planetary attractions.
         IF (FIRST) THEN
            TS = TSMIN
         ELSE
            R2 = 0D0
            DO I=1,3
               W = FD(I)
               R2 = R2+W*W
            END DO
            W = SQRT(R2)

*        Use the acceleration to decide how big a timestep can be tolerated.
            IF (W.NE.0D0) THEN
               TS = MIN(TSMAX,MAX(TSMIN,TSC/W))
            ELSE
               TS = TSMAX
            END IF
         END IF
         TS = TS*FB

*     Override if final epoch is imminent.
         TLEFT = TSPAN-RTN
         IF (ABS(TS).GT.ABS(TLEFT)) TS=TLEFT

*     Epoch of middle of timestep.
         HTS = TS/2D0
         T = T0+RTN+HTS

*     Is it time to recompute the major-planet elements?
         IF (FIRST.OR.ABS(T-TPEL)-AGEPEL.GE.TINY) THEN

*        Yes: go forward in time by just under the maximum allowed.
            TPEL = T+FB*AGEPEL

*        Compute the state vector for the new epoch.
            DO NP=1,8
               CALL sla_PLANET(TPEL,NP,PV,J)

*           Warning if remote epoch, abort if error.
               IF (J.EQ.1) THEN
                  JSTAT = 102
               ELSE IF (J.NE.0) THEN
                  GO TO 9010
               END IF

*           Transform the vector into universal elements.
               CALL sla_PV2UE(PV,TPEL,0D0,UP(1,NP),J)
               IF (J.NE.0) GO TO 9010
            END DO
         END IF

*     Is it time to recompute the major-planet motions?
         IF (FIRST.OR.ABS(T-TPMO)-AGEPMO.GE.TINY) THEN

*        Yes: look ahead.
            TPMO = T+FB*AGEPMO

*        Compute the motions of each planet (AU,AU/d).
            DO NP=1,8

*           The planet's position and velocity (AU,AU/s).
               CALL sla_UE2PV(TPMO,UP(1,NP),PVIN(1,NP),J)
               IF (J.NE.0) GO TO 9010

*           Scale velocity to AU/d.
               DO J=4,6
                  PVIN(J,NP) = PVIN(J,NP)*86400D0
               END DO

*           Precompute also the extrapolation correction terms.
               R2 = 0D0
               DO I=1,3
                  W = PVIN(I,NP)
                  R2 = R2+W*W
               END DO
               R2X3(NP) = R2*3D0
               GC(NP) = GCON2/(2D0*R2*SQRT(R2))
            END DO
         END IF

*     Reset the first-time flag.
         FIRST = .FALSE.

*     Unperturbed motion of the body at middle of timestep (AU,AU/s).
         CALL sla_UE2PV(T,UL,PV0,J)
         IF (J.NE.0) GO TO 9010

*     Perturbed position of the body (AU) and heliocentric distance cubed.
         R2 = 0D0
         DO I=1,3
            W = PV0(I)+PERP(I)+(PERV(I)+PERA(I)*HTS/2D0)*HTS
            PV(I) = W
            R2 = R2+W*W
         END DO
         R3 = R2*SQRT(R2)

*     The body's unperturbed heliocentric distance cubed.
         R2 = 0D0
         DO I=1,3
            W = PV0(I)
            R2 = R2+W*W
         END DO
         R03 = R2*SQRT(R2)

*     Compute indirect and initialize direct parts of the perturbation.
         DO I=1,3
            FI(I) = PV0(I)/R03-PV(I)/R3
            FD(I) = 0D0
         END DO

*     Ready to compute the direct planetary effects.

*     Interval from state-vector epoch to middle of current timestep.
         DT = T-TPMO
         DT2 = DT*DT

*     Planet by planet.
         DO NP=1,8

*        First compute the extrapolation in longitude (squared).
            R2 = 0D0
            DO J=4,6
               W = PVIN(J,NP)*DT
               R2 = R2+W*W
            END DO

*        Hence the tangential-to-circular correction factor.
            FC = 1D0+R2/R2X3(NP)

*        The radial correction factor due to the inwards acceleration.
            FG = 1D0-GC(NP)*DT2

*        Planet's position, and heliocentric distance cubed.
            R2 = 0D0
            DO I=1,3
               W = FG*(PVIN(I,NP)+FC*PVIN(I+3,NP)*DT)
               RHO(I) = W
               R2 = R2+W*W
            END DO
            RHO3 = R2*SQRT(R2)

*        Body-to-planet vector, light-time, and distance cubed.
            R2 = 0D0
            DO I=1,3
               W = RHO(I)-PV(I)
               DELTA(I) = W
               R2 = R2+W*W
            END DO
            W = SQRT(R2)
            DELTA3 = R2*SQRT(R2)

*        If too close, ignore this planet and set a warning.
            IF (R2.LT.1D-6) THEN
               JSTAT = NP
            ELSE

*           Accumulate "direct" part of perturbation acceleration.
               W = AMAS(NP)
               DO I=1,3
                  FD(I) = FD(I)+(DELTA(I)/DELTA3-RHO(I)/RHO3)/W
               END DO
            END IF
         END DO

*     Update the perturbations to the end of the timestep.
         RTN = RTN+TS
         DO I=1,3
            W = (FI(I)+FD(I))*GCON2
            FT = W*TS
            PERP(I) = PERP(I)+(PERV(I)+FT/2D0)*TS
            PERV(I) = PERV(I)+FT
            PERA(I) = W
         END DO

*     Time still to go.
         TLEFT = TSPAN-RTN

*     Is it either time to rectify the orbit or the last time through?
         IF (ABS(RTN).GE.AGEBEL.OR.FB*TLEFT.LE.0D0) THEN

*        Yes: update to the end of the current timestep.
            T0 = T0+RTN
            RTN = 0D0

*        The body's unperturbed motion (AU,AU/s).
            CALL sla_UE2PV(T0,UL,PV0,J)
            IF (J.NE.0) GO TO 9010

*        Add and re-initialize the perturbations.
            DO I=1,3
               J = I+3
               PV(I) = PV0(I)+PERP(I)
               PV(J) = PV0(J)+PERV(I)/86400D0
               PERP(I) = 0D0
               PERV(I) = 0D0
               PERA(I) = FD(I)*GCON2
            END DO

*        Use the position and velocity to set up new universal elements.
            CALL sla_PV2UE(PV,T0,0D0,UL,J)
            IF (J.NE.0) GO TO 9010

*        Adjust the timespan and time left.
            TSPAN = TFINAL-T0
            TLEFT = TSPAN
         END IF

*     Next timestep.
      END DO

*  Return the updated universal-element set.
      DO I=1,13
         U(I) = UL(I)
      END DO

*  Finished.
      GO TO 9999

*  Miscellaneous numerical error.
 9010 CONTINUE
      JSTAT = -1

 9999 CONTINUE
      END