1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
|
SUBROUTINE sla_PLANET (DATE, NP, PV, JSTAT)
*+
* - - - - - - -
* P L A N E T
* - - - - - - -
*
* Approximate heliocentric position and velocity of a specified
* major planet.
*
* Given:
* DATE d Modified Julian Date (JD - 2400000.5)
* NP i planet (1=Mercury, 2=Venus, 3=EMB ... 9=Pluto)
*
* Returned:
* PV d(6) heliocentric x,y,z,xdot,ydot,zdot, J2000
* equatorial triad (AU,AU/s)
* JSTAT i status: +1 = warning: date out of range
* 0 = OK
* -1 = illegal NP (outside 1-9)
* -2 = solution didn't converge
*
* Called: sla_PLANEL
*
* Notes
*
* 1 The epoch, DATE, is in the TDB timescale and is a Modified
* Julian Date (JD-2400000.5).
*
* 2 The reference frame is equatorial and is with respect to the
* mean equinox and ecliptic of epoch J2000.
*
* 3 If an NP value outside the range 1-9 is supplied, an error
* status (JSTAT = -1) is returned and the PV vector set to zeroes.
*
* 4 The algorithm for obtaining the mean elements of the planets
* from Mercury to Neptune is due to J.L. Simon, P. Bretagnon,
* J. Chapront, M. Chapront-Touze, G. Francou and J. Laskar
* (Bureau des Longitudes, Paris). The (completely different)
* algorithm for calculating the ecliptic coordinates of Pluto
* is by Meeus.
*
* 5 Comparisons of the present routine with the JPL DE200 ephemeris
* give the following RMS errors over the interval 1960-2025:
*
* position (km) speed (metre/sec)
*
* Mercury 334 0.437
* Venus 1060 0.855
* EMB 2010 0.815
* Mars 7690 1.98
* Jupiter 71700 7.70
* Saturn 199000 19.4
* Uranus 564000 16.4
* Neptune 158000 14.4
* Pluto 36400 0.137
*
* From comparisons with DE102, Simon et al quote the following
* longitude accuracies over the interval 1800-2200:
*
* Mercury 4"
* Venus 5"
* EMB 6"
* Mars 17"
* Jupiter 71"
* Saturn 81"
* Uranus 86"
* Neptune 11"
*
* In the case of Pluto, Meeus quotes an accuracy of 0.6 arcsec
* in longitude and 0.2 arcsec in latitude for the period
* 1885-2099.
*
* For all except Pluto, over the period 1000-3000 the accuracy
* is better than 1.5 times that over 1800-2200. Outside the
* period 1000-3000 the accuracy declines. For Pluto the
* accuracy declines rapidly outside the period 1885-2099.
* Outside these ranges (1885-2099 for Pluto, 1000-3000 for
* the rest) a "date out of range" warning status (JSTAT=+1)
* is returned.
*
* 6 The algorithms for (i) Mercury through Neptune and (ii) Pluto
* are completely independent. In the Mercury through Neptune
* case, the present SLALIB implementation differs from the
* original Simon et al Fortran code in the following respects.
*
* * The date is supplied as a Modified Julian Date rather
* than a Julian Date (MJD = JD - 2400000.5).
*
* * The result is returned only in equatorial Cartesian form;
* the ecliptic longitude, latitude and radius vector are not
* returned.
*
* * The velocity is in AU per second, not AU per day.
*
* * Different error/warning status values are used.
*
* * Kepler's equation is not solved inline.
*
* * Polynomials in T are nested to minimize rounding errors.
*
* * Explicit double-precision constants are used to avoid
* mixed-mode expressions.
*
* * There are other, cosmetic, changes to comply with
* Starlink/SLALIB style guidelines.
*
* None of the above changes affects the result significantly.
*
* 7 For NP=3 the result is for the Earth-Moon Barycentre. To
* obtain the heliocentric position and velocity of the Earth,
* either use the SLALIB routine sla_EVP or call sla_DMOON and
* subtract 0.012150581 times the geocentric Moon vector from
* the EMB vector produced by the present routine. (The Moon
* vector should be precessed to J2000 first, but this can
* be omitted for modern epochs without introducing significant
* inaccuracy.)
*
* References: Simon et al., Astron. Astrophys. 282, 663 (1994).
* Meeus, Astronomical Algorithms, Willmann-Bell (1991).
*
* P.T.Wallace Starlink 27 May 1997
*
* Copyright (C) 1997 Rutherford Appleton Laboratory
*-
IMPLICIT NONE
DOUBLE PRECISION DATE
INTEGER NP
DOUBLE PRECISION PV(6)
INTEGER JSTAT
* 2Pi, deg to radians, arcsec to radians
DOUBLE PRECISION D2PI,D2R,AS2R
PARAMETER (D2PI=6.283185307179586476925286766559D0,
: D2R=0.017453292519943295769236907684886D0,
: AS2R=4.848136811095359935899141023579D-6)
* Gaussian gravitational constant (exact)
DOUBLE PRECISION GCON
PARAMETER (GCON=0.01720209895D0)
* Seconds per Julian century
DOUBLE PRECISION SPC
PARAMETER (SPC=36525D0*86400D0)
* Sin and cos of J2000 mean obliquity (IAU 1976)
DOUBLE PRECISION SE,CE
PARAMETER (SE=0.3977771559319137D0,
: CE=0.9174820620691818D0)
INTEGER I,J,IJSP(3,43)
DOUBLE PRECISION AMAS(8),A(3,8),DLM(3,8),E(3,8),
: PI(3,8),DINC(3,8),OMEGA(3,8),
: DKP(9,8),CA(9,8),SA(9,8),
: DKQ(10,8),CLO(10,8),SLO(10,8),
: T,DA,DE,DPE,DI,DO,DMU,ARGA,ARGL,DM,
: AB(2,3,43),DJ0,DS0,DP0,DL0,DLD0,DB0,DR0,
: DJ,DS,DP,DJD,DSD,DPD,WLBR(3),WLBRD(3),
: WJ,WS,WP,AL,ALD,SAL,CAL,
: AC,BC,DL,DLD,DB,DBD,DR,DRD,
: SL,CL,SB,CB,SLCB,CLCB,X,Y,Z,XD,YD,ZD
* -----------------------
* Mercury through Neptune
* -----------------------
* Planetary inverse masses
DATA AMAS / 6023600D0,408523.5D0,328900.5D0,3098710D0,
: 1047.355D0,3498.5D0,22869D0,19314D0 /
*
* Tables giving the mean Keplerian elements, limited to T**2 terms:
*
* A semi-major axis (AU)
* DLM mean longitude (degree and arcsecond)
* E eccentricity
* PI longitude of the perihelion (degree and arcsecond)
* DINC inclination (degree and arcsecond)
* OMEGA longitude of the ascending node (degree and arcsecond)
*
DATA A /
: 0.3870983098D0, 0D0, 0D0,
: 0.7233298200D0, 0D0, 0D0,
: 1.0000010178D0, 0D0, 0D0,
: 1.5236793419D0, 3D-10, 0D0,
: 5.2026032092D0, 19132D-10, -39D-10,
: 9.5549091915D0, -0.0000213896D0, 444D-10,
: 19.2184460618D0, -3716D-10, 979D-10,
: 30.1103868694D0, -16635D-10, 686D-10 /
*
DATA DLM /
: 252.25090552D0, 5381016286.88982D0, -1.92789D0,
: 181.97980085D0, 2106641364.33548D0, 0.59381D0,
: 100.46645683D0, 1295977422.83429D0, -2.04411D0,
: 355.43299958D0, 689050774.93988D0, 0.94264D0,
: 34.35151874D0, 109256603.77991D0, -30.60378D0,
: 50.07744430D0, 43996098.55732D0, 75.61614D0,
: 314.05500511D0, 15424811.93933D0, -1.75083D0,
: 304.34866548D0, 7865503.20744D0, 0.21103D0/
*
DATA E /
: 0.2056317526D0, 0.0002040653D0, -28349D-10,
: 0.0067719164D0, -0.0004776521D0, 98127D-10,
: 0.0167086342D0, -0.0004203654D0, -0.0000126734D0,
: 0.0934006477D0, 0.0009048438D0, -80641D-10,
: 0.0484979255D0, 0.0016322542D0, -0.0000471366D0,
: 0.0555481426D0, -0.0034664062D0, -0.0000643639D0,
: 0.0463812221D0, -0.0002729293D0, 0.0000078913D0,
: 0.0094557470D0, 0.0000603263D0, 0D0 /
*
DATA PI /
: 77.45611904D0, 5719.11590D0, -4.83016D0,
: 131.56370300D0, 175.48640D0, -498.48184D0,
: 102.93734808D0, 11612.35290D0, 53.27577D0,
: 336.06023395D0, 15980.45908D0, -62.32800D0,
: 14.33120687D0, 7758.75163D0, 259.95938D0,
: 93.05723748D0, 20395.49439D0, 190.25952D0,
: 173.00529106D0, 3215.56238D0, -34.09288D0,
: 48.12027554D0, 1050.71912D0, 27.39717D0 /
*
DATA DINC /
: 7.00498625D0, -214.25629D0, 0.28977D0,
: 3.39466189D0, -30.84437D0, -11.67836D0,
: 0D0, 469.97289D0, -3.35053D0,
: 1.84972648D0, -293.31722D0, -8.11830D0,
: 1.30326698D0, -71.55890D0, 11.95297D0,
: 2.48887878D0, 91.85195D0, -17.66225D0,
: 0.77319689D0, -60.72723D0, 1.25759D0,
: 1.76995259D0, 8.12333D0, 0.08135D0 /
*
DATA OMEGA /
: 48.33089304D0, -4515.21727D0, -31.79892D0,
: 76.67992019D0, -10008.48154D0, -51.32614D0,
: 174.87317577D0, -8679.27034D0, 15.34191D0,
: 49.55809321D0, -10620.90088D0, -230.57416D0,
: 100.46440702D0, 6362.03561D0, 326.52178D0,
: 113.66550252D0, -9240.19942D0, -66.23743D0,
: 74.00595701D0, 2669.15033D0, 145.93964D0,
: 131.78405702D0, -221.94322D0, -0.78728D0 /
*
* Tables for trigonometric terms to be added to the mean elements
* of the semi-major axes.
*
DATA DKP /
: 69613, 75645, 88306, 59899, 15746, 71087, 142173, 3086, 0,
: 21863, 32794, 26934, 10931, 26250, 43725, 53867, 28939, 0,
: 16002, 21863, 32004, 10931, 14529, 16368, 15318, 32794, 0,
: 6345, 7818, 15636, 7077, 8184, 14163, 1107, 4872, 0,
: 1760, 1454, 1167, 880, 287, 2640, 19, 2047, 1454,
: 574, 0, 880, 287, 19, 1760, 1167, 306, 574,
: 204, 0, 177, 1265, 4, 385, 200, 208, 204,
: 0, 102, 106, 4, 98, 1367, 487, 204, 0 /
*
DATA CA /
: 4, -13, 11, -9, -9, -3, -1, 4, 0,
: -156, 59, -42, 6, 19, -20, -10, -12, 0,
: 64, -152, 62, -8, 32, -41, 19, -11, 0,
: 124, 621, -145, 208, 54, -57, 30, 15, 0,
: -23437, -2634, 6601, 6259, -1507, -1821, 2620, -2115,-1489,
: 62911,-119919, 79336, 17814,-24241, 12068, 8306, -4893, 8902,
: 389061,-262125,-44088, 8387,-22976, -2093, -615, -9720, 6633,
:-412235,-157046,-31430, 37817, -9740, -13, -7449, 9644, 0 /
*
DATA SA /
: -29, -1, 9, 6, -6, 5, 4, 0, 0,
: -48, -125, -26, -37, 18, -13, -20, -2, 0,
: -150, -46, 68, 54, 14, 24, -28, 22, 0,
: -621, 532, -694, -20, 192, -94, 71, -73, 0,
: -14614,-19828, -5869, 1881, -4372, -2255, 782, 930, 913,
: 139737, 0, 24667, 51123, -5102, 7429, -4095, -1976,-9566,
: -138081, 0, 37205,-49039,-41901,-33872,-27037,-12474,18797,
: 0, 28492,133236, 69654, 52322,-49577,-26430, -3593, 0 /
*
* Tables giving the trigonometric terms to be added to the mean
* elements of the mean longitudes.
*
DATA DKQ /
: 3086, 15746, 69613, 59899, 75645, 88306, 12661, 2658, 0, 0,
: 21863, 32794, 10931, 73, 4387, 26934, 1473, 2157, 0, 0,
: 10, 16002, 21863, 10931, 1473, 32004, 4387, 73, 0, 0,
: 10, 6345, 7818, 1107, 15636, 7077, 8184, 532, 10, 0,
: 19, 1760, 1454, 287, 1167, 880, 574, 2640, 19,1454,
: 19, 574, 287, 306, 1760, 12, 31, 38, 19, 574,
: 4, 204, 177, 8, 31, 200, 1265, 102, 4, 204,
: 4, 102, 106, 8, 98, 1367, 487, 204, 4, 102 /
*
DATA CLO /
: 21, -95, -157, 41, -5, 42, 23, 30, 0, 0,
: -160, -313, -235, 60, -74, -76, -27, 34, 0, 0,
: -325, -322, -79, 232, -52, 97, 55, -41, 0, 0,
: 2268, -979, 802, 602, -668, -33, 345, 201, -55, 0,
: 7610, -4997,-7689,-5841,-2617, 1115, -748, -607, 6074, 354,
: -18549, 30125,20012, -730, 824, 23, 1289, -352,-14767,-2062,
:-135245,-14594, 4197,-4030,-5630,-2898, 2540, -306, 2939, 1986,
: 89948, 2103, 8963, 2695, 3682, 1648, 866, -154, -1963, -283 /
*
DATA SLO /
: -342, 136, -23, 62, 66, -52, -33, 17, 0, 0,
: 524, -149, -35, 117, 151, 122, -71, -62, 0, 0,
: -105, -137, 258, 35, -116, -88, -112, -80, 0, 0,
: 854, -205, -936, -240, 140, -341, -97, -232, 536, 0,
: -56980, 8016, 1012, 1448,-3024,-3710, 318, 503, 3767, 577,
: 138606,-13478,-4964, 1441,-1319,-1482, 427, 1236, -9167,-1918,
: 71234,-41116, 5334,-4935,-1848, 66, 434,-1748, 3780, -701,
: -47645, 11647, 2166, 3194, 679, 0, -244, -419, -2531, 48 /
* -----
* Pluto
* -----
*
* Coefficients for fundamental arguments: mean longitudes
* (degrees) and mean rate of change of longitude (degrees per
* Julian century) for Jupiter, Saturn and Pluto
*
DATA DJ0, DJD / 34.35D0, 3034.9057D0 /
DATA DS0, DSD / 50.08D0, 1222.1138D0 /
DATA DP0, DPD / 238.96D0, 144.9600D0 /
* Coefficients for latitude, longitude, radius vector
DATA DL0,DLD0 / 238.956785D0, 144.96D0 /
DATA DB0 / -3.908202D0 /
DATA DR0 / 40.7247248D0 /
*
* Coefficients for periodic terms (Meeus's Table 36.A)
*
* The coefficients for term n in the series are:
*
* IJSP(1,n) J
* IJSP(2,n) S
* IJSP(3,n) P
* AB(1,1,n) longitude sine (degrees)
* AB(2,1,n) longitude cosine (degrees)
* AB(1,2,n) latitude sine (degrees)
* AB(2,2,n) latitude cosine (degrees)
* AB(1,3,n) radius vector sine (AU)
* AB(2,3,n) radius vector cosine (AU)
*
DATA (IJSP(I, 1),I=1,3),((AB(J,I, 1),J=1,2),I=1,3) /
: 0, 0, 1,
: -19798886D-6, 19848454D-6,
: -5453098D-6, -14974876D-6,
: 66867334D-7, 68955876D-7 /
DATA (IJSP(I, 2),I=1,3),((AB(J,I, 2),J=1,2),I=1,3) /
: 0, 0, 2,
: 897499D-6, -4955707D-6,
: 3527363D-6, 1672673D-6,
: -11826086D-7, -333765D-7 /
DATA (IJSP(I, 3),I=1,3),((AB(J,I, 3),J=1,2),I=1,3) /
: 0, 0, 3,
: 610820D-6, 1210521D-6,
: -1050939D-6, 327763D-6,
: 1593657D-7, -1439953D-7 /
DATA (IJSP(I, 4),I=1,3),((AB(J,I, 4),J=1,2),I=1,3) /
: 0, 0, 4,
: -341639D-6, -189719D-6,
: 178691D-6, -291925D-6,
: -18948D-7, 482443D-7 /
DATA (IJSP(I, 5),I=1,3),((AB(J,I, 5),J=1,2),I=1,3) /
: 0, 0, 5,
: 129027D-6, -34863D-6,
: 18763D-6, 100448D-6,
: -66634D-7, -85576D-7 /
DATA (IJSP(I, 6),I=1,3),((AB(J,I, 6),J=1,2),I=1,3) /
: 0, 0, 6,
: -38215D-6, 31061D-6,
: -30594D-6, -25838D-6,
: 30841D-7, -5765D-7 /
DATA (IJSP(I, 7),I=1,3),((AB(J,I, 7),J=1,2),I=1,3) /
: 0, 1, -1,
: 20349D-6, -9886D-6,
: 4965D-6, 11263D-6,
: -6140D-7, 22254D-7 /
DATA (IJSP(I, 8),I=1,3),((AB(J,I, 8),J=1,2),I=1,3) /
: 0, 1, 0,
: -4045D-6, -4904D-6,
: 310D-6, -132D-6,
: 4434D-7, 4443D-7 /
DATA (IJSP(I, 9),I=1,3),((AB(J,I, 9),J=1,2),I=1,3) /
: 0, 1, 1,
: -5885D-6, -3238D-6,
: 2036D-6, -947D-6,
: -1518D-7, 641D-7 /
DATA (IJSP(I,10),I=1,3),((AB(J,I,10),J=1,2),I=1,3) /
: 0, 1, 2,
: -3812D-6, 3011D-6,
: -2D-6, -674D-6,
: -5D-7, 792D-7 /
DATA (IJSP(I,11),I=1,3),((AB(J,I,11),J=1,2),I=1,3) /
: 0, 1, 3,
: -601D-6, 3468D-6,
: -329D-6, -563D-6,
: 518D-7, 518D-7 /
DATA (IJSP(I,12),I=1,3),((AB(J,I,12),J=1,2),I=1,3) /
: 0, 2, -2,
: 1237D-6, 463D-6,
: -64D-6, 39D-6,
: -13D-7, -221D-7 /
DATA (IJSP(I,13),I=1,3),((AB(J,I,13),J=1,2),I=1,3) /
: 0, 2, -1,
: 1086D-6, -911D-6,
: -94D-6, 210D-6,
: 837D-7, -494D-7 /
DATA (IJSP(I,14),I=1,3),((AB(J,I,14),J=1,2),I=1,3) /
: 0, 2, 0,
: 595D-6, -1229D-6,
: -8D-6, -160D-6,
: -281D-7, 616D-7 /
DATA (IJSP(I,15),I=1,3),((AB(J,I,15),J=1,2),I=1,3) /
: 1, -1, 0,
: 2484D-6, -485D-6,
: -177D-6, 259D-6,
: 260D-7, -395D-7 /
DATA (IJSP(I,16),I=1,3),((AB(J,I,16),J=1,2),I=1,3) /
: 1, -1, 1,
: 839D-6, -1414D-6,
: 17D-6, 234D-6,
: -191D-7, -396D-7 /
DATA (IJSP(I,17),I=1,3),((AB(J,I,17),J=1,2),I=1,3) /
: 1, 0, -3,
: -964D-6, 1059D-6,
: 582D-6, -285D-6,
: -3218D-7, 370D-7 /
DATA (IJSP(I,18),I=1,3),((AB(J,I,18),J=1,2),I=1,3) /
: 1, 0, -2,
: -2303D-6, -1038D-6,
: -298D-6, 692D-6,
: 8019D-7, -7869D-7 /
DATA (IJSP(I,19),I=1,3),((AB(J,I,19),J=1,2),I=1,3) /
: 1, 0, -1,
: 7049D-6, 747D-6,
: 157D-6, 201D-6,
: 105D-7, 45637D-7 /
DATA (IJSP(I,20),I=1,3),((AB(J,I,20),J=1,2),I=1,3) /
: 1, 0, 0,
: 1179D-6, -358D-6,
: 304D-6, 825D-6,
: 8623D-7, 8444D-7 /
DATA (IJSP(I,21),I=1,3),((AB(J,I,21),J=1,2),I=1,3) /
: 1, 0, 1,
: 393D-6, -63D-6,
: -124D-6, -29D-6,
: -896D-7, -801D-7 /
DATA (IJSP(I,22),I=1,3),((AB(J,I,22),J=1,2),I=1,3) /
: 1, 0, 2,
: 111D-6, -268D-6,
: 15D-6, 8D-6,
: 208D-7, -122D-7 /
DATA (IJSP(I,23),I=1,3),((AB(J,I,23),J=1,2),I=1,3) /
: 1, 0, 3,
: -52D-6, -154D-6,
: 7D-6, 15D-6,
: -133D-7, 65D-7 /
DATA (IJSP(I,24),I=1,3),((AB(J,I,24),J=1,2),I=1,3) /
: 1, 0, 4,
: -78D-6, -30D-6,
: 2D-6, 2D-6,
: -16D-7, 1D-7 /
DATA (IJSP(I,25),I=1,3),((AB(J,I,25),J=1,2),I=1,3) /
: 1, 1, -3,
: -34D-6, -26D-6,
: 4D-6, 2D-6,
: -22D-7, 7D-7 /
DATA (IJSP(I,26),I=1,3),((AB(J,I,26),J=1,2),I=1,3) /
: 1, 1, -2,
: -43D-6, 1D-6,
: 3D-6, 0D-6,
: -8D-7, 16D-7 /
DATA (IJSP(I,27),I=1,3),((AB(J,I,27),J=1,2),I=1,3) /
: 1, 1, -1,
: -15D-6, 21D-6,
: 1D-6, -1D-6,
: 2D-7, 9D-7 /
DATA (IJSP(I,28),I=1,3),((AB(J,I,28),J=1,2),I=1,3) /
: 1, 1, 0,
: -1D-6, 15D-6,
: 0D-6, -2D-6,
: 12D-7, 5D-7 /
DATA (IJSP(I,29),I=1,3),((AB(J,I,29),J=1,2),I=1,3) /
: 1, 1, 1,
: 4D-6, 7D-6,
: 1D-6, 0D-6,
: 1D-7, -3D-7 /
DATA (IJSP(I,30),I=1,3),((AB(J,I,30),J=1,2),I=1,3) /
: 1, 1, 3,
: 1D-6, 5D-6,
: 1D-6, -1D-6,
: 1D-7, 0D-7 /
DATA (IJSP(I,31),I=1,3),((AB(J,I,31),J=1,2),I=1,3) /
: 2, 0, -6,
: 8D-6, 3D-6,
: -2D-6, -3D-6,
: 9D-7, 5D-7 /
DATA (IJSP(I,32),I=1,3),((AB(J,I,32),J=1,2),I=1,3) /
: 2, 0, -5,
: -3D-6, 6D-6,
: 1D-6, 2D-6,
: 2D-7, -1D-7 /
DATA (IJSP(I,33),I=1,3),((AB(J,I,33),J=1,2),I=1,3) /
: 2, 0, -4,
: 6D-6, -13D-6,
: -8D-6, 2D-6,
: 14D-7, 10D-7 /
DATA (IJSP(I,34),I=1,3),((AB(J,I,34),J=1,2),I=1,3) /
: 2, 0, -3,
: 10D-6, 22D-6,
: 10D-6, -7D-6,
: -65D-7, 12D-7 /
DATA (IJSP(I,35),I=1,3),((AB(J,I,35),J=1,2),I=1,3) /
: 2, 0, -2,
: -57D-6, -32D-6,
: 0D-6, 21D-6,
: 126D-7, -233D-7 /
DATA (IJSP(I,36),I=1,3),((AB(J,I,36),J=1,2),I=1,3) /
: 2, 0, -1,
: 157D-6, -46D-6,
: 8D-6, 5D-6,
: 270D-7, 1068D-7 /
DATA (IJSP(I,37),I=1,3),((AB(J,I,37),J=1,2),I=1,3) /
: 2, 0, 0,
: 12D-6, -18D-6,
: 13D-6, 16D-6,
: 254D-7, 155D-7 /
DATA (IJSP(I,38),I=1,3),((AB(J,I,38),J=1,2),I=1,3) /
: 2, 0, 1,
: -4D-6, 8D-6,
: -2D-6, -3D-6,
: -26D-7, -2D-7 /
DATA (IJSP(I,39),I=1,3),((AB(J,I,39),J=1,2),I=1,3) /
: 2, 0, 2,
: -5D-6, 0D-6,
: 0D-6, 0D-6,
: 7D-7, 0D-7 /
DATA (IJSP(I,40),I=1,3),((AB(J,I,40),J=1,2),I=1,3) /
: 2, 0, 3,
: 3D-6, 4D-6,
: 0D-6, 1D-6,
: -11D-7, 4D-7 /
DATA (IJSP(I,41),I=1,3),((AB(J,I,41),J=1,2),I=1,3) /
: 3, 0, -2,
: -1D-6, -1D-6,
: 0D-6, 1D-6,
: 4D-7, -14D-7 /
DATA (IJSP(I,42),I=1,3),((AB(J,I,42),J=1,2),I=1,3) /
: 3, 0, -1,
: 6D-6, -3D-6,
: 0D-6, 0D-6,
: 18D-7, 35D-7 /
DATA (IJSP(I,43),I=1,3),((AB(J,I,43),J=1,2),I=1,3) /
: 3, 0, 0,
: -1D-6, -2D-6,
: 0D-6, 1D-6,
: 13D-7, 3D-7 /
* Validate the planet number.
IF (NP.LT.1.OR.NP.GT.9) THEN
JSTAT=-1
DO I=1,6
PV(I)=0D0
END DO
ELSE
* Separate algorithms for Pluto and the rest.
IF (NP.NE.9) THEN
* -----------------------
* Mercury through Neptune
* -----------------------
* Time: Julian millennia since J2000.
T=(DATE-51544.5D0)/365250D0
* OK status unless remote epoch.
IF (ABS(T).LE.1D0) THEN
JSTAT=0
ELSE
JSTAT=1
END IF
* Compute the mean elements.
DA=A(1,NP)+(A(2,NP)+A(3,NP)*T)*T
DL=(3600D0*DLM(1,NP)+(DLM(2,NP)+DLM(3,NP)*T)*T)*AS2R
DE=E(1,NP)+(E(2,NP)+E(3,NP)*T)*T
DPE=MOD((3600D0*PI(1,NP)+(PI(2,NP)+PI(3,NP)*T)*T)*AS2R,D2PI)
DI=(3600D0*DINC(1,NP)+(DINC(2,NP)+DINC(3,NP)*T)*T)*AS2R
DO=MOD((3600D0*OMEGA(1,NP)
: +(OMEGA(2,NP)+OMEGA(3,NP)*T)*T)*AS2R,D2PI)
* Apply the trigonometric terms.
DMU=0.35953620D0*T
DO J=1,8
ARGA=DKP(J,NP)*DMU
ARGL=DKQ(J,NP)*DMU
DA=DA+(CA(J,NP)*COS(ARGA)+SA(J,NP)*SIN(ARGA))*1D-7
DL=DL+(CLO(J,NP)*COS(ARGL)+SLO(J,NP)*SIN(ARGL))*1D-7
END DO
ARGA=DKP(9,NP)*DMU
DA=DA+T*(CA(9,NP)*COS(ARGA)+SA(9,NP)*SIN(ARGA))*1D-7
DO J=9,10
ARGL=DKQ(J,NP)*DMU
DL=DL+T*(CLO(J,NP)*COS(ARGL)+SLO(J,NP)*SIN(ARGL))*1D-7
END DO
DL=MOD(DL,D2PI)
* Daily motion.
DM=GCON*SQRT((1D0+1D0/AMAS(NP))/(DA*DA*DA))
* Make the prediction.
CALL sla_PLANEL(DATE,1,DATE,DI,DO,DPE,DA,DE,DL,DM,PV,J)
IF (J.LT.0) JSTAT=-2
ELSE
* -----
* Pluto
* -----
* Time: Julian centuries since J2000.
T=(DATE-51544.5D0)/36525D0
* OK status unless remote epoch.
IF (T.GE.-1.15D0.AND.T.LE.1D0) THEN
JSTAT=0
ELSE
JSTAT=1
END IF
* Fundamental arguments (radians).
DJ=(DJ0+DJD*T)*D2R
DS=(DS0+DSD*T)*D2R
DP=(DP0+DPD*T)*D2R
* Initialize coefficients and derivatives.
DO I=1,3
WLBR(I)=0D0
WLBRD(I)=0D0
END DO
* Term by term through Meeus Table 36.A.
DO J=1,43
* Argument and derivative (radians, radians per century).
WJ=DBLE(IJSP(1,J))
WS=DBLE(IJSP(2,J))
WP=DBLE(IJSP(3,J))
AL=WJ*DJ+WS*DS+WP*DP
ALD=(WJ*DJD+WS*DSD+WP*DPD)*D2R
* Functions of argument.
SAL=SIN(AL)
CAL=COS(AL)
* Periodic terms in longitude, latitude, radius vector.
DO I=1,3
* A and B coefficients (deg, AU).
AC=AB(1,I,J)
BC=AB(2,I,J)
* Periodic terms (deg, AU, deg/Jc, AU/Jc).
WLBR(I)=WLBR(I)+AC*SAL+BC*CAL
WLBRD(I)=WLBRD(I)+(AC*CAL-BC*SAL)*ALD
END DO
END DO
* Heliocentric longitude and derivative (radians, radians/sec).
DL=(DL0+DLD0*T+WLBR(1))*D2R
DLD=(DLD0+WLBRD(1))*D2R/SPC
* Heliocentric latitude and derivative (radians, radians/sec).
DB=(DB0+WLBR(2))*D2R
DBD=WLBRD(2)*D2R/SPC
* Heliocentric radius vector and derivative (AU, AU/sec).
DR=DR0+WLBR(3)
DRD=WLBRD(3)/SPC
* Functions of latitude, longitude, radius vector.
SL=SIN(DL)
CL=COS(DL)
SB=SIN(DB)
CB=COS(DB)
SLCB=SL*CB
CLCB=CL*CB
* Heliocentric vector and derivative, J2000 ecliptic and equinox.
X=DR*CLCB
Y=DR*SLCB
Z=DR*SB
XD=DRD*CLCB-DR*(CL*SB*DBD+SLCB*DLD)
YD=DRD*SLCB+DR*(-SL*SB*DBD+CLCB*DLD)
ZD=DRD*SB+DR*CB*DBD
* Transform to J2000 equator and equinox.
PV(1)=X
PV(2)=Y*CE-Z*SE
PV(3)=Y*SE+Z*CE
PV(4)=XD
PV(5)=YD*CE-ZD*SE
PV(6)=YD*SE+ZD*CE
END IF
END IF
END
|