1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
SUBROUTINE sla_SMAT (N, A, Y, D, JF, IW)
*+
* - - - - -
* S M A T
* - - - - -
*
* Matrix inversion & solution of simultaneous equations
* (single precision)
*
* For the set of n simultaneous equations in n unknowns:
* A.Y = X
*
* where:
* A is a non-singular N x N matrix
* Y is the vector of N unknowns
* X is the known vector
*
* SMATRX computes:
* the inverse of matrix A
* the determinant of matrix A
* the vector of N unknowns
*
* Arguments:
*
* symbol type dimension before after
*
* N int no. of unknowns unchanged
* A real (N,N) matrix inverse
* Y real (N) vector solution
* D real - determinant
* * JF int - singularity flag
* IW int (N) - workspace
*
* * JF is the singularity flag. If the matrix is non-singular,
* JF=0 is returned. If the matrix is singular, JF=-1 & D=0.0 are
* returned. In the latter case, the contents of array A on return
* are undefined.
*
* Algorithm:
* Gaussian elimination with partial pivoting.
*
* Speed:
* Very fast.
*
* Accuracy:
* Fairly accurate - errors 1 to 4 times those of routines optimised
* for accuracy.
*
* Note: replaces the obsolete sla_SMATRX routine.
*
* P.T.Wallace Starlink 10 September 1990
*
* Copyright (C) 1995 Rutherford Appleton Laboratory
*-
IMPLICIT NONE
INTEGER N
REAL A(N,N),Y(N),D
INTEGER JF
INTEGER IW(N)
REAL SFA
PARAMETER (SFA=1E-20)
INTEGER K,IMX,I,J,NP1MK,KI
REAL AMX,T,AKK,YK,AIK
JF=0
D=1.0
DO K=1,N
AMX=ABS(A(K,K))
IMX=K
IF (K.NE.N) THEN
DO I=K+1,N
T=ABS(A(I,K))
IF (T.GT.AMX) THEN
AMX=T
IMX=I
END IF
END DO
END IF
IF (AMX.LT.SFA) THEN
JF=-1
ELSE
IF (IMX.NE.K) THEN
DO J=1,N
T=A(K,J)
A(K,J)=A(IMX,J)
A(IMX,J)=T
END DO
T=Y(K)
Y(K)=Y(IMX)
Y(IMX)=T
D=-D
END IF
IW(K)=IMX
AKK=A(K,K)
D=D*AKK
IF (ABS(D).LT.SFA) THEN
JF=-1
ELSE
AKK=1.0/AKK
A(K,K)=AKK
DO J=1,N
IF (J.NE.K) A(K,J)=A(K,J)*AKK
END DO
YK=Y(K)*AKK
Y(K)=YK
DO I=1,N
AIK=A(I,K)
IF (I.NE.K) THEN
DO J=1,N
IF (J.NE.K) A(I,J)=A(I,J)-AIK*A(K,J)
END DO
Y(I)=Y(I)-AIK*YK
END IF
END DO
DO I=1,N
IF (I.NE.K) A(I,K)=-A(I,K)*AKK
END DO
END IF
END IF
END DO
IF (JF.NE.0) THEN
D=0.0
ELSE
DO K=1,N
NP1MK=N+1-K
KI=IW(NP1MK)
IF (NP1MK.NE.KI) THEN
DO I=1,N
T=A(I,NP1MK)
A(I,NP1MK)=A(I,KI)
A(I,KI)=T
END DO
END IF
END DO
END IF
END
|