aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/sun67.htx/node145.html
blob: 8fbb8534bcb98ae16da0773be693b33a2dfffc7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
 by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippman, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>SLA_PERTUE - Perturbed Universal Elements</TITLE>
<META NAME="description" CONTENT="SLA_PERTUE - Perturbed Universal Elements">
<META NAME="keywords" CONTENT="sun67">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
<LINK REL="STYLESHEET" HREF="sun67.css">
<LINK REL="next" HREF="node146.html">
<LINK REL="previous" HREF="node144.html">
<LINK REL="up" HREF="node13.html">
<LINK REL="next" HREF="node146.html">
</HEAD>
<BODY >
<BR> <HR>
<A NAME="tex2html1876" HREF="node146.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html1874" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html1868" HREF="node144.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1877" HREF="node146.html">SLA_PLANEL - Planet Position from Elements</A>
<BR>
<B>Up:</B> <A NAME="tex2html1875" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html1869" HREF="node144.html">SLA_PERTEL - Perturbed Orbital Elements</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<H2><A NAME="SECTION0004132000000000000000">SLA_PERTUE - Perturbed Universal Elements</A>
<A NAME="xref_SLA_PERTUE">&#160;</A><A NAME="SLA_PERTUE">&#160;</A>
</H2>
       <DL>
<DT><STRONG>ACTION:</STRONG>
<DD>Update the universal elements of an asteroid or comet by
applying planetary perturbations.
<P>    <DT><STRONG>CALL:</STRONG>
<DD><TT>CALL sla_PERTUE (DATE, U, JSTAT)</TT>
<P>       </DL>
<P>     <DL>
<DT><STRONG>GIVEN:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>DATE1</EM></TD>
<TH ALIGN="LEFT"><B>D</B></TH>
<TD ALIGN="LEFT" NOWRAP>final epoch (TT MJD) for the updated elements</TD>
</TR>
</TABLE></DL>
<P>     <DL>
<DT><STRONG>GIVEN and RETURNED:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>U</EM></TD>
<TH ALIGN="LEFT"><B>D(13)</B></TH>
<TD ALIGN="LEFT" NOWRAP>universal elements (updated in place)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(1)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>combined mass (<I>M</I>+<I>m</I>)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(2)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>total energy of the orbit (<IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img24.gif"
 ALT="$\alpha$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(3)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>reference (osculating) epoch (<I>t<SUB>0</SUB></I>)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(4-6)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>position at reference epoch (<IMG WIDTH="17" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img102.gif"
 ALT="${\rm \bf r}_0$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(7-9)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>velocity at reference epoch (<IMG WIDTH="19" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img103.gif"
 ALT="${\rm \bf v}_0$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(10)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>heliocentric distance at reference epoch</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(11)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP><IMG WIDTH="39" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img104.gif"
 ALT="${\rm \bf r}_0.{\rm \bf v}_0$"></TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(12)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>date (<I>t</I>)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(13)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>universal eccentric anomaly (<IMG WIDTH="14" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
 SRC="img105.gif"
 ALT="$\psi$">) of date, approx</TD>
</TR>
</TABLE></DL>
<P>     <DL>
<DT><STRONG>RETURNED:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>JSTAT</EM></TD>
<TH ALIGN="LEFT"><B>I</B></TH>
<TD ALIGN="LEFT" NOWRAP>status:</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD>
<TD ALIGN="LEFT"><B></B></TD>
<TD ALIGN="LEFT" NOWRAP> +102 = warning, distant epoch</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD>
<TD ALIGN="LEFT"><B></B></TD>
<TD ALIGN="LEFT" NOWRAP> +101 = warning, large timespan
(&gt;100 years)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD>
<TD ALIGN="LEFT"><B></B></TD>
<TD ALIGN="LEFT" NOWRAP> +1 to +8 = coincident with major planet
(Note&nbsp;5)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD>
<TD ALIGN="LEFT"><B></B></TD>
<TD ALIGN="LEFT" NOWRAP>        0 = OK</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM></EM></TD>
<TD ALIGN="LEFT"><B></B></TD>
<TD ALIGN="LEFT" NOWRAP>     -1 = numerical error</TD>
</TR>
</TABLE></DL>
<P>      <DL>
<DT><STRONG>NOTES:</STRONG>
<DD><DL COMPACT>
<DT>1.
<DD>The ``universal'' elements are those which define the orbit for the
purposes of the method of universal variables (see reference 2).
They consist of the combined mass of the two bodies, an epoch,
        and the position and velocity vectors (arbitrary reference frame)
        at that epoch.  The parameter set used here includes also various
        quantities that can, in fact, be derived from the other
        information.  This approach is taken to avoiding unnecessary
        computation and loss of accuracy.  The supplementary quantities
        are (i)&nbsp;<IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img24.gif"
 ALT="$\alpha$">, which is proportional to the total energy of the
        orbit, (ii)&nbsp;the heliocentric distance at epoch,
        (iii)&nbsp;the outwards component of the velocity at the given epoch,
        (iv)&nbsp;an estimate of <IMG WIDTH="14" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
 SRC="img105.gif"
 ALT="$\psi$">, the ``universal eccentric anomaly'' at a
        given date and (v)&nbsp;that date.
  <DT>2.
<DD>The universal elements are with respect to the J2000 equator and
        equinox.
  <DT>3.
<DD>The epochs DATE, U(3) and U(12) are all Modified Julian Dates
        (JD-2400000.5).
  <DT>4.
<DD>The algorithm is a simplified form of Encke's method.  It takes as
        a basis the unperturbed motion of the body, and numerically
        integrates the perturbing accelerations from the major planets.
        The expression used is essentially Sterne's 6.7-2 (reference 1).
        Everhart and Pitkin (reference 2) suggest rectifying the orbit at
        each integration step by propagating the new perturbed position
        and velocity as the new universal variables.  In the present
        routine the orbit is rectified less frequently than this, in order
        to gain a slight speed advantage.  However, the rectification is
        done directly in terms of position and velocity, as suggested by
        Everhart and Pitkin, bypassing the use of conventional orbital
        elements.
<P>
The <I>f</I>(<I>q</I>) part of the full Encke method is not used.  The purpose
        of this part is to avoid subtracting two nearly equal quantities
        when calculating the ``indirect member'', which takes account of the
        small change in the Sun's attraction due to the slightly displaced
        position of the perturbed body.  A simpler, direct calculation in
        double precision proves to be faster and not significantly less
        accurate.
<P>
Apart from employing a variable timestep, and occasionally
        ``rectifying the orbit'' to keep the indirect member small, the
        integration is done in a fairly straightforward way.  The
        acceleration estimated for the middle of the timestep is assumed
        to apply throughout that timestep;  it is also used in the
        extrapolation of the perturbations to the middle of the next
        timestep, to predict the new disturbed position.  There is no
        iteration within a timestep.
<P>
Measures are taken to reach a compromise between execution time
        and accuracy.  The starting-point is the goal of achieving
        arcsecond accuracy for ordinary minor planets over a ten-year
        timespan.  This goal dictates how large the timesteps can be,
        which in turn dictates how frequently the unperturbed motion has
        to be recalculated from the osculating elements.
<P>
Within predetermined limits, the timestep for the numerical
        integration is varied in length in inverse proportion to the
        magnitude of the net acceleration on the body from the major
        planets.
<P>
The numerical integration requires estimates of the major-planet
        motions.  Approximate positions for the major planets (Pluto
        alone is omitted) are obtained from the routine sla_PLANET.  Two
        levels of interpolation are used, to enhance speed without
        significantly degrading accuracy.  At a low frequency, the routine
        sla_PLANET is called to generate updated position+velocity ``state
        vectors''.  The only task remaining to be carried out at the full
        frequency (<I>i.e.</I> at each integration step) is to use the state
        vectors to extrapolate the planetary positions.  In place of a
        strictly linear extrapolation, some allowance is made for the
        curvature of the orbit by scaling back the radius vector as the
        linear extrapolation goes off at a tangent.
<P>
Various other approximations are made.  For example, perturbations
        by Pluto and the minor planets are neglected, relativistic effects
        are not taken into account and the Earth-Moon system is treated as
        a single body.
<P>
In the interests of simplicity, the background calculations for
        the major planets are carried out <I>en masse.</I>
        The mean elements and
        state vectors for all the planets are refreshed at the same time,
        without regard for orbit curvature, mass or proximity.
<P>  <DT>5.
<DD>This routine is not intended to be used for major planets.
        However, if major-planet elements are supplied, sensible results
        will, in fact, be produced.  This happens because the routine
        checks the separation between the body and each of the planets and
        interprets a suspiciously small value (0.001&nbsp;AU) as an attempt to
        apply the routine to the planet concerned.  If this condition
        is detected, the
        contribution from that planet is ignored, and the status is set to
        the planet number (Mercury=1,...,Neptune=8) as a warning.
 </DL></DL>
<P>     <DL>
<DT><STRONG>REFERENCES:</STRONG>
<DD><DL COMPACT>
<DT>1.
<DD>Sterne, Theodore E., <I>An Introduction to Celestial Mechanics,</I>
Interscience Publishers, 1960.  Section 6.7, p199.
<DT>2.
<DD>Everhart, E. &amp; Pitkin, E.T., Am.&nbsp;J.&nbsp;Phys.&nbsp;51, 712, 1983.
   </DL></DL>
<BR> <HR>
<A NAME="tex2html1876" HREF="node146.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html1874" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html1868" HREF="node144.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html1877" HREF="node146.html">SLA_PLANEL - Planet Position from Elements</A>
<BR>
<B>Up:</B> <A NAME="tex2html1875" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html1869" HREF="node144.html">SLA_PERTEL - Perturbed Orbital Elements</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<ADDRESS>
<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
</ADDRESS>
</BODY>
</HTML>