aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/sun67.htx/node167.html
blob: f422ec8d94d29815d1aa7f5929c5fff1f1c735d1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
 by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippman, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>SLA_REFRO - Refraction</TITLE>
<META NAME="description" CONTENT="SLA_REFRO - Refraction">
<META NAME="keywords" CONTENT="sun67">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
<LINK REL="STYLESHEET" HREF="sun67.css">
<LINK REL="next" HREF="node168.html">
<LINK REL="previous" HREF="node166.html">
<LINK REL="up" HREF="node13.html">
<LINK REL="next" HREF="node168.html">
</HEAD>
<BODY >
<BR> <HR>
<A NAME="tex2html2096" HREF="node168.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html2094" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html2088" HREF="node166.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2097" HREF="node168.html">SLA_REFV - Apply Refraction to Vector</A>
<BR>
<B>Up:</B> <A NAME="tex2html2095" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2089" HREF="node166.html">SLA_REFCOQ - Refraction Constants (fast)</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<H2><A NAME="SECTION0004154000000000000000">SLA_REFRO - Refraction</A>
<A NAME="xref_SLA_REFRO">&#160;</A><A NAME="SLA_REFRO">&#160;</A>
</H2>
       <DL>
<DT><STRONG>ACTION:</STRONG>
<DD>Atmospheric refraction, for radio or optical/IR wavelengths.
<DT><STRONG>CALL:</STRONG>
<DD><TT>CALL sla_REFRO (ZOBS, HM, TDK, PMB, RH, WL, PHI, TLR, EPS, REF)</TT>
<P>       </DL>
<P>     <DL>
<DT><STRONG>GIVEN:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>ZOBS</EM></TD>
<TH ALIGN="LEFT"><B>D</B></TH>
<TD ALIGN="LEFT" NOWRAP>observed zenith distance of the source (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>HM</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>height of the observer above sea level (metre)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>TDK</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>ambient temperature at the observer (degrees K)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>PMB</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>pressure at the observer (mB)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>RH</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>relative humidity at the observer (range 0-1)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>WL</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>effective wavelength of the source (<IMG WIDTH="26" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img21.gif"
 ALT="$\mu{\rm m}$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>PHI</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>latitude of the observer (radian, astronomical)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>TLR</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>temperature lapse rate in the troposphere
(degrees K per metre)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>EPS</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>precision required to terminate iteration (radian)</TD>
</TR>
</TABLE></DL>
<P>     <DL>
<DT><STRONG>RETURNED:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>REF</EM></TD>
<TH ALIGN="LEFT"><B>D</B></TH>
<TH ALIGN="LEFT" NOWRAP>refraction: <I>in vacuo</I> ZD minus observed ZD (radians)</TH>
</TR>
</TABLE></DL>
<P>      <DL>
<DT><STRONG>NOTES:</STRONG>
<DD><DL COMPACT>
<DT>1.
<DD>A suggested value for the TLR argument is 0.0065D0.  The
refraction is significantly affected by TLR, and if studies
of the local atmosphere have been carried out a better TLR
        value may be available.
  <DT>2.
<DD>A suggested value for the EPS argument is 1D-8.  The result is
        usually at least two orders of magnitude more computationally
        precise than the supplied EPS value.
  <DT>3.
<DD>The routine computes the refraction for zenith distances up
        to and a little beyond <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img22.gif"
 ALT="$90^{\circ}$"> using the method of Hohenkerk
        &amp; Sinclair (NAO Technical Notes 59 and 63, subsequently adopted
        in the <I>Explanatory Supplement to the Astronomical Almanac,</I>
        1992 - see section 3.281).
  <DT>4.
<DD>The code is based on the AREF optical/IR refraction subroutine
        of C.Hohenkerk (HMNAO, September 1984), with extensions to
        support the radio case.  The modifications to the original HMNAO
        optical/IR refraction code which affect the results are:
        <UL>
<LI> Murray's values for the gas constants have been used
               (<I>Vectorial Astrometry,</I> Adam Hilger, 1983).
<LI> A better model for <I>P</I><SUB><I>s</I></SUB>(<I>T</I>) has been adopted (taken from
               Gill, <I>Atmosphere-Ocean Dynamics,</I> Academic Press, 1982).
<LI> More accurate expressions for <I>Pw</I><SUB><I>o</I></SUB> have been adopted
               (again from Gill 1982).
<LI> Provision for radio wavelengths has been added using
               expressions devised by A.T.Sinclair, RGO (private
               communication 1989), based on the Essen &amp; Froome
               refractivity formula adopted in Resolution&nbsp;1 of the
               12th International Geodesy Association General Assembly
               (Bulletin G&#233;od&#233;sique <B>70</B> p390, 1963).
        </UL>
        None of the changes significantly affects the optical/IR results
        with respect to the algorithm given in the 1992 <I>Explanatory
        Supplement.</I>  For example, at <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img174.gif"
 ALT="$70^\circ$"> zenith distance the present
        routine agrees with the ES algorithm to better than 
      <IMG WIDTH="31" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img175.gif"
 ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.05$"><P>
for any reasonable combination of parameters.  However, the
        improved water-vapour expressions do make a significant difference
        in the radio band, at <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img174.gif"
 ALT="$70^\circ$"> zenith distance reaching almost
        <IMG WIDTH="17" HEIGHT="17" ALIGN="BOTTOM" BORDER="0"
 SRC="img130.gif"
 ALT="$4\hspace{-0.05em}^{'\hspace{-0.1em}'}$"> for a hot, humid, low-altitude site during a period of
        low pressure.
  <DT>5.
<DD>The radio refraction is chosen by specifying WL &gt;100&nbsp;<IMG WIDTH="26" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img21.gif"
 ALT="$\mu{\rm m}$">.        Because the algorithm takes no account of the ionosphere, the
        accuracy deteriorates at low frequencies, below about 30MHz.
  <DT>6.
<DD>Before use, the value of ZOBS is expressed in the range <IMG WIDTH="25" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img47.gif"
 ALT="$\pm \pi$">.        If this ranged ZOBS is negative, the result REF is computed from its
        absolute value before being made negative to match.  In addition, if
        it has an absolute value greater than <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img176.gif"
 ALT="$93^\circ$">, a fixed REF value
        equal to the result for ZOBS&nbsp;<IMG WIDTH="43" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img177.gif"
 ALT="$=93^\circ$"> is returned, appropriately
        signed.
  <DT>7.
<DD>As in the original Hohenkerk and Sinclair algorithm, fixed values
        of the water vapour polytrope exponent, the height of the
        tropopause, and the height at which refraction is negligible are
        used.
  <DT>8.
<DD>The radio refraction has been tested against work done by
        Iain&nbsp;Coulson, JACH, (private communication 1995) for the
        James Clerk Maxwell Telescope, Mauna Kea.  For typical conditions,
        agreement at the 
      <IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img25.gif"
 ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.1$">    level is achieved for moderate ZD,
        worsening to perhaps 
      <IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img83.gif"
 ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.5$">   -
      <IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img178.gif"
 ALT="$1\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.0$">    at ZD <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img179.gif"
 ALT="$80^\circ$">.        At hot and humid sea-level sites the accuracy will not be as good.
  <DT>9.
<DD>It should be noted that the relative humidity RH is formally
        defined in terms of ``mixing ratio'' rather than pressures or
        densities as is often stated.  It is the mass of water per unit
        mass of dry air divided by that for saturated air at the same
        temperature and pressure (see Gill 1982).  The familiar
        <IMG WIDTH="75" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img180.gif"
 ALT="$\nu=p_w/p_s$"> or <IMG WIDTH="75" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img181.gif"
 ALT="$\nu=\rho_w/\rho_s$"> expressions can differ from
        the formal definition by several percent, significant in the
        radio case.
  </DL></DL>
<BR> <HR>
<A NAME="tex2html2096" HREF="node168.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html2094" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html2088" HREF="node166.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2097" HREF="node168.html">SLA_REFV - Apply Refraction to Vector</A>
<BR>
<B>Up:</B> <A NAME="tex2html2095" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2089" HREF="node166.html">SLA_REFCOQ - Refraction Constants (fast)</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<ADDRESS>
<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
</ADDRESS>
</BODY>
</HTML>