1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippman, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Spherical Trigonometry</TITLE>
<META NAME="description" CONTENT="Spherical Trigonometry">
<META NAME="keywords" CONTENT="sun67">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
<LINK REL="STYLESHEET" HREF="sun67.css">
<LINK REL="next" HREF="node200.html">
<LINK REL="previous" HREF="node197.html">
<LINK REL="up" HREF="node197.html">
<LINK REL="next" HREF="node199.html">
</HEAD>
<BODY >
<BR> <HR>
<A NAME="tex2html2434" HREF="node199.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
<A NAME="tex2html2432" HREF="node197.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
<A NAME="tex2html2426" HREF="node197.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2435" HREF="node199.html">Formatting angles</A>
<BR>
<B>Up:</B> <A NAME="tex2html2433" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2427" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<H2><A NAME="SECTION00051000000000000000">
Spherical Trigonometry</A>
</H2>
Celestial phenomena occur at such vast distances from the
observer that for most practical purposes there is no need to
work in 3D; only the direction
of a source matters, not how far away it is. Things can
therefore be viewed as if they were happening
on the inside of sphere with the observer at the centre -
the <I>celestial sphere</I>. Problems involving
positions and orientations in the sky can then be solved by
using the formulae of <I>spherical trigonometry</I>, which
apply to <I>spherical triangles</I>, the sides of which are
<I>great circles</I>.
<P>
Positions on the celestial sphere may be specified by using
a spherical polar coordinate system, defined in terms of
some fundamental plane and a line in that plane chosen to
represent zero longitude. Mathematicians usually work with the
co-latitude, with zero at the principal pole, whereas most
astronomical coordinate systems use latitude, reckoned plus and
minus from the equator.
Astronomical coordinate systems may be either right-handed
(<I>e.g.</I> right ascension and declination <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img3.gif"
ALT="$[\,\alpha,\delta\,]$">,Galactic longitude and latitude <IMG WIDTH="59" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="img98.gif"
ALT="$[\,l^{I\!I},b^{I\!I}\,]$">)or left-handed (<I>e.g.</I> hour angle and
declination <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$">). In some cases
different conventions have been used in the past, a fruitful source of
mistakes. Azimuth and geographical longitude are examples; azimuth
is now generally reckoned north through east
(making a left-handed system); geographical longitude is now usually
taken to increase eastwards (a right-handed system) but astronomers
used to employ a west-positive convention. In reports
and program comments it is wise to spell out what convention
is being used, if there is any possibility of confusion.
<P>
When applying spherical trigonometry formulae, attention must be
paid to
rounding errors (for example it is a bad idea to find a
small angle through its cosine) and to the possibility of
problems close to poles.
Also, if a formulation relies on inspection to establish
the quadrant of the result, it is an indication that a vector-related
method might be preferable.
<P>
As well as providing many routines which work in terms of specific
spherical coordinates such as <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img3.gif"
ALT="$[\,\alpha,\delta\,]$">, SLALIB provides
two routines which operate directly on generic spherical
coordinates:
sla_SEP
computes the separation between
two points (the distance along a great circle) and
sla_BEAR
computes the bearing (or <I>position angle</I>)
of one point seen from the other. The routines
sla_DSEP
and
sla_DBEAR
are double precision equivalents. As a simple demonstration
of SLALIB, we will use these facilities to estimate the distance from
London to Sydney and the initial compass heading:
<P><PRE>
IMPLICIT NONE
* Degrees to radians
REAL D2R
PARAMETER (D2R=0.01745329252)
* Longitudes and latitudes (radians) for London and Sydney
REAL AL,BL,AS,BS
PARAMETER (AL=-0.2*D2R,BL=51.5*D2R,AS=151.2*D2R,BS=-33.9*D2R)
* Earth radius in km (spherical approximation)
REAL RKM
PARAMETER (RKM=6375.0)
REAL sla_SEP,sla_BEAR
* Distance and initial heading (N=0, E=90)
WRITE (*,'(1X,I5,'' km,'',I4,'' deg'')')
: NINT(sla_SEP(AL,BL,AS,BS)*RKM),NINT(sla_BEAR(AL,BL,AS,BS)/D2R)
END
</PRE>
<P>(The result is 17011 km, <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img235.gif"
ALT="$61^\circ$">.)
<P>
The routines
sla_PAV and
sla_DPAV
are equivalents of sla_BEAR and sla_DBEAR but starting from
direction-cosines instead of spherical coordinates.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"> </A>
<UL>
<LI><A NAME="tex2html2436" HREF="node199.html#SECTION00051100000000000000">
Formatting angles</A>
</UL>
<!--End of Table of Child-Links-->
<BR> <HR>
<A NAME="tex2html2434" HREF="node199.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
<A NAME="tex2html2432" HREF="node197.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
<A NAME="tex2html2426" HREF="node197.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2435" HREF="node199.html">Formatting angles</A>
<BR>
<B>Up:</B> <A NAME="tex2html2433" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2427" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<ADDRESS>
<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
</ADDRESS>
</BODY>
</HTML>
|